Spaces:
Runtime error
Runtime error
Commit
·
d1ef404
1
Parent(s):
a44a953
upload src
Browse files- app.py +70 -0
- models/nnet/nnet.pt +3 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/data/__init__.py +0 -0
- src/data/__pycache__/__init__.cpython-310.pyc +0 -0
- src/data/__pycache__/preprocessing_utils.cpython-310.pyc +0 -0
- src/data/preprocessing_utils.py +36 -0
- src/models/__init__.py +0 -0
- src/models/__pycache__/__init__.cpython-310.pyc +0 -0
- src/models/__pycache__/models_utils.cpython-310.pyc +0 -0
- src/models/models_utils.py +591 -0
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from src.data.preprocessing_utils import DataPreprocessor
|
| 5 |
+
|
| 6 |
+
MODEL_FILEPATH = 'models/nnet/nnet.pt'
|
| 7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 8 |
+
with open(MODEL_FILEPATH, 'rb') as file:
|
| 9 |
+
clf = torch.load(file, map_location=device)
|
| 10 |
+
|
| 11 |
+
preprocessor = DataPreprocessor()
|
| 12 |
+
|
| 13 |
+
strings = {
|
| 14 |
+
'nationality': 'Есть предпочтения по национальности',
|
| 15 |
+
'families': 'Есть предпочтение семьям',
|
| 16 |
+
'sex': 'Есть предпочтения по полу'
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
examples = [
|
| 20 |
+
'''Просьба посредников не беспокоить. Ищем ОДНУ ДЕВУШКУ.
|
| 21 |
+
Сдаётся в аренду на длительный срок светлая и уютная квартира - студия
|
| 22 |
+
общей площадью 33м2, находящаяся на 4м этаже 5и этажного теплого кирпичного дома. Современный ремонт!
|
| 23 |
+
Рядом в пешей доступности парк Красная Пресня (5 мин)/ Красногвардейские Пруды (2 мин)/
|
| 24 |
+
Москва-Сити (10 мин)! Магазины/кофейни/рестораны! 10 мин на машине до любой точки в центре города!
|
| 25 |
+
В квартире есть вся необходимая для проживания мебель и техника.
|
| 26 |
+
Строго без животных, строго Славян. Просмотр в любое время - ключи на руках.
|
| 27 |
+
''',
|
| 28 |
+
'''Сдам на длительный срок семейной паре, только с гражданством РФ.
|
| 29 |
+
Квартира после косметического ремонта. Без мебели.
|
| 30 |
+
Есть кухонная мебель и мебель в ванной комнате.
|
| 31 |
+
Бытовая техника для проживания присутствует.
|
| 32 |
+
Оплата = аренда + счётчики (свет, вода).
|
| 33 |
+
''',
|
| 34 |
+
'''В современном доме. Собственник без комиссии.
|
| 35 |
+
Закрытая территория. Доступ через охрану.
|
| 36 |
+
М Прокшино 10 мин пешком.
|
| 37 |
+
Без детей и животных.
|
| 38 |
+
Возможно без залога.
|
| 39 |
+
Счетчики и интернет включены в стоимость
|
| 40 |
+
'''
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def make_output_string(labels):
|
| 45 |
+
output_list = []
|
| 46 |
+
for label in strings.keys():
|
| 47 |
+
if labels[label]:
|
| 48 |
+
output_list.append(strings[label])
|
| 49 |
+
if output_list:
|
| 50 |
+
output_str = ', '.join(output_list).capitalize()
|
| 51 |
+
else:
|
| 52 |
+
output_str = 'Нет особенностей'
|
| 53 |
+
return output_str
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def predict_label(text):
|
| 57 |
+
preprocessed_text = preprocessor.preprocess_texts([text])
|
| 58 |
+
print(preprocessed_text)
|
| 59 |
+
if preprocessed_text == [[]]:
|
| 60 |
+
return 'Введите текст объявления!'
|
| 61 |
+
labels = clf.predict_labels(preprocessed_text)
|
| 62 |
+
output_str = make_output_string(labels)
|
| 63 |
+
return output_str
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
demo = gr.Interface(fn=predict_label, inputs=[gr.Text(label="Текст объявления", lines=5)],
|
| 67 |
+
outputs=[gr.Textbox(label="Особенности объявления")],
|
| 68 |
+
examples=examples)
|
| 69 |
+
|
| 70 |
+
demo.launch()
|
models/nnet/nnet.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eca046bc6417544613037ccbd7c55537dbfa0d44d181480b0c5aedc32b775877
|
| 3 |
+
size 3474673281
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (156 Bytes). View file
|
|
|
src/data/__init__.py
ADDED
|
File without changes
|
src/data/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (161 Bytes). View file
|
|
|
src/data/__pycache__/preprocessing_utils.cpython-310.pyc
ADDED
|
Binary file (1.92 kB). View file
|
|
|
src/data/preprocessing_utils.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import string
|
| 2 |
+
import nltk
|
| 3 |
+
from nltk.corpus import stopwords
|
| 4 |
+
from nltk.tokenize import WordPunctTokenizer
|
| 5 |
+
import pymorphy2
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DataPreprocessor:
|
| 9 |
+
|
| 10 |
+
def __init__(self):
|
| 11 |
+
nltk.download('stopwords')
|
| 12 |
+
self.morph = pymorphy2.MorphAnalyzer()
|
| 13 |
+
self.tokenizer = WordPunctTokenizer()
|
| 14 |
+
self.punctuation = set(string.punctuation)
|
| 15 |
+
self.stopwords_russian = stopwords.words("russian")
|
| 16 |
+
self.stop_tokens = (set(self.stopwords_russian) - {'и', 'или', 'не'}).union(self.punctuation)
|
| 17 |
+
|
| 18 |
+
def tokenize_data(self, texts):
|
| 19 |
+
tokens = [self.tokenizer.tokenize(str(text).lower()) for text in texts]
|
| 20 |
+
return tokens
|
| 21 |
+
|
| 22 |
+
def lemmatize_tokens_string(self, tokens_string):
|
| 23 |
+
new_tokens = []
|
| 24 |
+
for token in tokens_string:
|
| 25 |
+
if token not in self.stop_tokens:
|
| 26 |
+
new_tokens.append(self.morph.parse(token)[0].normal_form)
|
| 27 |
+
return new_tokens
|
| 28 |
+
|
| 29 |
+
def lemmatize_tokens(self, tokens):
|
| 30 |
+
for i in range(len(tokens)):
|
| 31 |
+
tokens[i] = self.lemmatize_tokens_string(tokens[i])
|
| 32 |
+
|
| 33 |
+
def preprocess_texts(self, texts):
|
| 34 |
+
tokens = self.tokenize_data(texts)
|
| 35 |
+
self.lemmatize_tokens(tokens)
|
| 36 |
+
return tokens
|
src/models/__init__.py
ADDED
|
File without changes
|
src/models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (163 Bytes). View file
|
|
|
src/models/__pycache__/models_utils.cpython-310.pyc
ADDED
|
Binary file (18.4 kB). View file
|
|
|
src/models/models_utils.py
ADDED
|
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from gensim.models import KeyedVectors
|
| 6 |
+
from collections import Counter
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from sklearn.metrics import roc_auc_score, precision_recall_curve
|
| 11 |
+
import tqdm
|
| 12 |
+
from copy import deepcopy
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_roc_aucs(y, probas):
|
| 18 |
+
y_onehot = pd.get_dummies(y)
|
| 19 |
+
roc_auc_scores = []
|
| 20 |
+
if y_onehot.shape[1] > 2:
|
| 21 |
+
for i in range(y_onehot.shape[1]):
|
| 22 |
+
roc_auc_scores.append(roc_auc_score(y_onehot[i], probas[:, i]))
|
| 23 |
+
roc_auc_scores.append(roc_auc_score(y, probas, multi_class='ovo', average='macro'))
|
| 24 |
+
else:
|
| 25 |
+
roc_auc_scores.append(roc_auc_score(y, probas[:, 1]))
|
| 26 |
+
return roc_auc_scores
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_max_f1_score(y, probas):
|
| 30 |
+
if probas.shape[1] != 2:
|
| 31 |
+
raise ValueError('Expected probabilities for 2 classes would be given')
|
| 32 |
+
y_onehot = pd.get_dummies(y)
|
| 33 |
+
f1_score = []
|
| 34 |
+
threshold = []
|
| 35 |
+
p, r, t = precision_recall_curve(y, probas[:, 1])
|
| 36 |
+
f1_scores = 2 * p * r / (p + r + 0.001)
|
| 37 |
+
threshold.append(t[np.argmax(f1_scores)])
|
| 38 |
+
f1_score.append(np.max(f1_scores))
|
| 39 |
+
return f1_score, threshold
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class RNN(nn.Module):
|
| 43 |
+
|
| 44 |
+
def __init__(self, vectors, n_of_words, n_of_classes, num_layers, bidirectional):
|
| 45 |
+
dim = vectors.shape[1]
|
| 46 |
+
d = 2 if bidirectional else 1
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.emb = nn.Embedding(n_of_words, dim)
|
| 49 |
+
self.emb.load_state_dict({'weight': torch.tensor(vectors)})
|
| 50 |
+
self.emb.weight.requires_grad = False
|
| 51 |
+
self.gru = nn.GRU(input_size=dim, hidden_size=dim, batch_first=True,
|
| 52 |
+
num_layers=num_layers, bidirectional=bidirectional)
|
| 53 |
+
self.linear = nn.Linear(dim * num_layers * d, n_of_classes)
|
| 54 |
+
|
| 55 |
+
def forward(self, batch):
|
| 56 |
+
emb = self.emb(batch)
|
| 57 |
+
_, last_state = self.gru(emb)
|
| 58 |
+
last_state = torch.permute(last_state, (1, 0, 2)).reshape(1, batch.shape[0], -1).squeeze()
|
| 59 |
+
out = self.linear(last_state.squeeze())
|
| 60 |
+
if len(out.size()) == 1:
|
| 61 |
+
out = out.unsqueeze(0)
|
| 62 |
+
return out
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class DistilBERTClass(torch.nn.Module):
|
| 66 |
+
def __init__(self, n_classes):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.l1 = DistilBertModel.from_pretrained('DeepPavlov/distilrubert-small-cased-conversational')
|
| 69 |
+
self.linear = torch.nn.Linear(768, n_classes)
|
| 70 |
+
|
| 71 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 72 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
|
| 73 |
+
hidden_state = output_1[0]
|
| 74 |
+
pooler = hidden_state[:, 0]
|
| 75 |
+
output = self.linear(pooler)
|
| 76 |
+
return output
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class BaseClassifier:
|
| 80 |
+
|
| 81 |
+
def __init__(self, batch_size=16, epochs=100):
|
| 82 |
+
self.batch_size = batch_size
|
| 83 |
+
self.epochs = epochs
|
| 84 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 85 |
+
|
| 86 |
+
def preprocess_with_random_initialization(self, train_tokens):
|
| 87 |
+
self.pad_idx = 0
|
| 88 |
+
self.unk_idx = 1
|
| 89 |
+
|
| 90 |
+
set_of_words = set()
|
| 91 |
+
for tokens_string in train_tokens:
|
| 92 |
+
set_of_words.update(tokens_string)
|
| 93 |
+
|
| 94 |
+
self.idx_to_word = ['PADDING', 'UNK'] + list(set_of_words)
|
| 95 |
+
self.word_to_idx = {key: i for i, key in enumerate(self.idx_to_word)}
|
| 96 |
+
self.amount_of_words = len(self.idx_to_word)
|
| 97 |
+
|
| 98 |
+
self.vectors = np.zeros((len(self.idx_to_word), 300))
|
| 99 |
+
self.vectors[0, :] = np.zeros(300)
|
| 100 |
+
self.vectors[1:len(self.idx_to_word), :] = (np.random.rand(len(self.idx_to_word) - 1, 300) - 0.5) / 300
|
| 101 |
+
|
| 102 |
+
def preprocess(self, vectors_file_path):
|
| 103 |
+
self.emb = KeyedVectors.load_word2vec_format(vectors_file_path)
|
| 104 |
+
|
| 105 |
+
self.pad_idx = 0
|
| 106 |
+
self.unk_idx = 1
|
| 107 |
+
|
| 108 |
+
self.idx_to_word = ['PADDING', 'UNK'] + list(self.emb.index_to_key)
|
| 109 |
+
self.word_to_idx = {key: i for i, key in enumerate(self.idx_to_word)}
|
| 110 |
+
self.amount_of_words = len(self.idx_to_word)
|
| 111 |
+
|
| 112 |
+
self.vectors = np.zeros((len(self.idx_to_word), 300))
|
| 113 |
+
self.vectors[0, :] = np.zeros(300)
|
| 114 |
+
self.vectors[1, :] = (np.random.rand(300) - 0.5) / 300
|
| 115 |
+
for i in range(2, len(self.idx_to_word)):
|
| 116 |
+
self.vectors[i, :] = self.emb.get_vector(self.idx_to_word[i])
|
| 117 |
+
|
| 118 |
+
def fit(self, train_tokens, y_train, test_tokens=None, y_test=None,
|
| 119 |
+
reinitialize=True, stop_epochs=None, show_logs=False):
|
| 120 |
+
if reinitialize:
|
| 121 |
+
self.n_of_classes = y_train.nunique()
|
| 122 |
+
self.initialize_nnet()
|
| 123 |
+
|
| 124 |
+
self.print_test = test_tokens and y_test
|
| 125 |
+
self.stop_epochs = stop_epochs
|
| 126 |
+
train_scores = []
|
| 127 |
+
self.train_scores_mean = []
|
| 128 |
+
self.test_scores = []
|
| 129 |
+
self.test_aucs = []
|
| 130 |
+
self.test_f1 = []
|
| 131 |
+
criterion = nn.CrossEntropyLoss()
|
| 132 |
+
for epoch in tqdm.tqdm(range(self.epochs)):
|
| 133 |
+
self.epoch = epoch
|
| 134 |
+
self.nnet.train()
|
| 135 |
+
train_batches = self.batch_generator(train_tokens, y_train)
|
| 136 |
+
test_batches = self.batch_generator(test_tokens, y_test)
|
| 137 |
+
for i, batch in tqdm.tqdm(
|
| 138 |
+
enumerate(train_batches),
|
| 139 |
+
total=len(train_tokens) // self.batch_size
|
| 140 |
+
):
|
| 141 |
+
pred = self.nnet(batch['tokens'])
|
| 142 |
+
loss = criterion(pred, batch['labels'])
|
| 143 |
+
self.optimizer.zero_grad()
|
| 144 |
+
loss.backward()
|
| 145 |
+
self.optimizer.step()
|
| 146 |
+
if show_logs and i % 400 == 0:
|
| 147 |
+
train_score = criterion(self.nnet(batch['tokens']), batch['labels'])
|
| 148 |
+
print(train_score.item())
|
| 149 |
+
train_scores.append(train_score.item())
|
| 150 |
+
if show_logs:
|
| 151 |
+
self.train_scores_mean.append(sum(train_scores) / len(train_scores))
|
| 152 |
+
train_scores = []
|
| 153 |
+
if self.print_test:
|
| 154 |
+
test_pred_prob = torch.tensor([], device='cpu')
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
self.nnet.eval()
|
| 157 |
+
for batch in test_batches:
|
| 158 |
+
test_batch_pred_prob = self.nnet(batch['tokens'])
|
| 159 |
+
test_batch_pred_prob_cpu = test_batch_pred_prob.to('cpu')
|
| 160 |
+
test_pred_prob = torch.cat((test_pred_prob, test_batch_pred_prob_cpu), 0)
|
| 161 |
+
test_score = criterion(test_pred_prob, torch.tensor(y_test.values, device='cpu'))
|
| 162 |
+
self.test_scores.append(test_score.item())
|
| 163 |
+
test_pred_probas = F.softmax(test_pred_prob).detach().cpu().numpy()
|
| 164 |
+
self.test_aucs.append(get_roc_aucs(y_test, test_pred_probas))
|
| 165 |
+
self.test_f1.append(get_max_f1_score(y_test, test_pred_probas)[0])
|
| 166 |
+
self.print_metrics()
|
| 167 |
+
if self.early_stopping_check():
|
| 168 |
+
break
|
| 169 |
+
|
| 170 |
+
def count_tokens(self, tokens):
|
| 171 |
+
self.words_counter = Counter()
|
| 172 |
+
self.amount_of_tokens = 0
|
| 173 |
+
for s in tokens:
|
| 174 |
+
self.words_counter.update(s)
|
| 175 |
+
self.amount_of_tokens += len(s)
|
| 176 |
+
|
| 177 |
+
def index_tokens(self, tokens_string):
|
| 178 |
+
return [self.word_to_idx.get(token, self.unk_idx) for token in tokens_string]
|
| 179 |
+
|
| 180 |
+
def fill_with_pads(self, tokens):
|
| 181 |
+
tokens = deepcopy(tokens)
|
| 182 |
+
max_len = 0
|
| 183 |
+
for tokens_string in tokens:
|
| 184 |
+
max_len = max(max_len, len(tokens_string))
|
| 185 |
+
for tokens_string in tokens:
|
| 186 |
+
for i in range(len(tokens_string), max_len):
|
| 187 |
+
tokens_string.append(self.pad_idx)
|
| 188 |
+
return tokens
|
| 189 |
+
|
| 190 |
+
def as_matrix(self, tokens):
|
| 191 |
+
tokens = deepcopy(tokens)
|
| 192 |
+
for j, s in enumerate(tokens):
|
| 193 |
+
tokens[j] = self.index_tokens(s)
|
| 194 |
+
tokens = self.fill_with_pads(tokens)
|
| 195 |
+
return tokens
|
| 196 |
+
|
| 197 |
+
def batch_generator(self, tokens, labels=None):
|
| 198 |
+
for i in range(0, len(tokens), self.batch_size):
|
| 199 |
+
batch_tokens = tokens[i: i + self.batch_size]
|
| 200 |
+
if labels:
|
| 201 |
+
batch_labels = torch.tensor(labels.values[i: i + self.batch_size],
|
| 202 |
+
dtype=torch.long,
|
| 203 |
+
device=self.device)
|
| 204 |
+
else:
|
| 205 |
+
batch_labels = None
|
| 206 |
+
|
| 207 |
+
batch_tokens_idx = torch.tensor(self.as_matrix(batch_tokens),
|
| 208 |
+
dtype=torch.int,
|
| 209 |
+
device=self.device)
|
| 210 |
+
if len(batch_tokens_idx.size()) == 1:
|
| 211 |
+
batch_tokens_idx = torch.unsqueeze(batch_tokens_idx, 0)
|
| 212 |
+
|
| 213 |
+
batch = {
|
| 214 |
+
'tokens': batch_tokens_idx,
|
| 215 |
+
'labels': batch_labels
|
| 216 |
+
}
|
| 217 |
+
yield batch
|
| 218 |
+
|
| 219 |
+
def print_metrics(self, print_test=True):
|
| 220 |
+
|
| 221 |
+
if self.print_test:
|
| 222 |
+
print(f'epoch {self.epoch}/{self.epochs}')
|
| 223 |
+
print('auc', self.test_aucs[-1])
|
| 224 |
+
print('score', self.test_scores[-1])
|
| 225 |
+
print('f1 score', self.test_f1[-1])
|
| 226 |
+
|
| 227 |
+
legend_labels = []
|
| 228 |
+
if self.n_of_classes > 2:
|
| 229 |
+
for i in range(self.n_of_classes):
|
| 230 |
+
legend_labels.append(f'Class {i}')
|
| 231 |
+
legend_labels.append('General')
|
| 232 |
+
|
| 233 |
+
plt.figure(figsize=(5, 15))
|
| 234 |
+
|
| 235 |
+
plt.clf()
|
| 236 |
+
|
| 237 |
+
plt.subplot(3, 1, 1)
|
| 238 |
+
plt.plot(np.arange(1, self.epoch + 2), self.test_aucs)
|
| 239 |
+
plt.grid()
|
| 240 |
+
plt.title('Test ROC AUC')
|
| 241 |
+
plt.xlabel('Num. of epochs')
|
| 242 |
+
plt.ylabel('ROC AUC')
|
| 243 |
+
plt.legend(legend_labels)
|
| 244 |
+
|
| 245 |
+
plt.subplot(3, 1, 2)
|
| 246 |
+
plt.plot(np.arange(1, self.epoch + 2), self.test_f1)
|
| 247 |
+
plt.grid()
|
| 248 |
+
plt.title('Test F1-score')
|
| 249 |
+
plt.xlabel('Num. of epochs')
|
| 250 |
+
plt.ylabel('F1-score')
|
| 251 |
+
plt.legend(legend_labels)
|
| 252 |
+
|
| 253 |
+
plt.subplot(3, 1, 3)
|
| 254 |
+
plt.plot(np.arange(1, self.epoch + 2), self.train_scores_mean, label='Train loss')
|
| 255 |
+
plt.plot(np.arange(1, self.epoch + 2), self.test_scores, label='Test loss')
|
| 256 |
+
plt.title('Loss')
|
| 257 |
+
plt.xlabel('Num. of epochs')
|
| 258 |
+
plt.ylabel('Loss')
|
| 259 |
+
plt.legend()
|
| 260 |
+
plt.grid()
|
| 261 |
+
plt.draw()
|
| 262 |
+
|
| 263 |
+
else:
|
| 264 |
+
plt.figure(figsize=(5, 15))
|
| 265 |
+
plt.plot(np.arange(1, self.epoch + 2), self.train_scores_mean, label='Train loss')
|
| 266 |
+
plt.title('Loss')
|
| 267 |
+
plt.xlabel('Num. of epochs')
|
| 268 |
+
plt.ylabel('Loss')
|
| 269 |
+
plt.legend()
|
| 270 |
+
plt.grid()
|
| 271 |
+
plt.show()
|
| 272 |
+
|
| 273 |
+
def early_stopping_check(self):
|
| 274 |
+
if self.stop_epochs is None or self.stop_epochs >= len(self.test_scores):
|
| 275 |
+
return False
|
| 276 |
+
else:
|
| 277 |
+
print(self.test_scores)
|
| 278 |
+
first_score = np.array(self.test_scores)[-self.stop_epochs - 1]
|
| 279 |
+
last_scores = np.array(self.test_scores)[-self.stop_epochs:]
|
| 280 |
+
return np.all(last_scores >= first_score)
|
| 281 |
+
|
| 282 |
+
def predict_proba(self, tokens, labels):
|
| 283 |
+
batches = self.batch_generator(tokens, labels)
|
| 284 |
+
pred_probas = torch.tensor([], device=self.device)
|
| 285 |
+
with torch.no_grad():
|
| 286 |
+
self.nnet.eval()
|
| 287 |
+
for batch in batches:
|
| 288 |
+
batch_prob = self.nnet(batch['tokens'])
|
| 289 |
+
pred_probas = torch.cat((pred_probas, batch_prob))
|
| 290 |
+
return F.softmax(pred_probas).detach().cpu().numpy()
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class RNNClassifier(BaseClassifier):
|
| 294 |
+
|
| 295 |
+
def __init__(self, batch_size=16, epochs=100,
|
| 296 |
+
num_layers=1, bidirectional=False):
|
| 297 |
+
self.batch_size = batch_size
|
| 298 |
+
self.epochs = epochs
|
| 299 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 300 |
+
self.num_layers = num_layers
|
| 301 |
+
self.bidirectional = bidirectional
|
| 302 |
+
|
| 303 |
+
def initialize_nnet(self):
|
| 304 |
+
self.nnet = RNN(self.vectors, self.amount_of_words,
|
| 305 |
+
n_of_classes=self.n_of_classes,
|
| 306 |
+
num_layers=self.num_layers,
|
| 307 |
+
bidirectional=self.bidirectional).to(self.device)
|
| 308 |
+
self.optimizer = torch.optim.Adam(self.nnet.parameters())
|
| 309 |
+
|
| 310 |
+
def save_model(self, filepath):
|
| 311 |
+
with open(filepath, 'wb') as file:
|
| 312 |
+
torch.save(self.nnet.state_dict(), file)
|
| 313 |
+
|
| 314 |
+
def load_model(self, filepath, amount_of_words):
|
| 315 |
+
self.amount_of_words = amount_of_words
|
| 316 |
+
self.vectors = np.zeros((amount_of_words, 300))
|
| 317 |
+
self.n_of_classes = 2
|
| 318 |
+
self.nnet = RNN(self.vectors, self.amount_of_words,
|
| 319 |
+
n_of_classes=self.n_of_classes,
|
| 320 |
+
num_layers=self.num_layers,
|
| 321 |
+
bidirectional=self.bidirectional).to(self.device)
|
| 322 |
+
self.nnet.load_state_dict(torch.load(filepath, map_location=self.device))
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
class DBERTClassifier(BaseClassifier):
|
| 326 |
+
|
| 327 |
+
def __init__(self, batch_size=16, epochs=100):
|
| 328 |
+
self.batch_size = batch_size
|
| 329 |
+
self.epochs = epochs
|
| 330 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 331 |
+
|
| 332 |
+
def initialize_nnet(self):
|
| 333 |
+
self.nnet = DistilBERTClass(self.n_of_classes).to(self.device)
|
| 334 |
+
self.optimizer = torch.optim.Adam(self.nnet.parameters(), lr=2e-6)
|
| 335 |
+
# 'DeepPavlov/rubert-base-cased' 'DeepPavlov/distilrubert-small-cased-conversational',
|
| 336 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained('DeepPavlov/distilrubert-small-cased-conversational',
|
| 337 |
+
do_lower_case=True)
|
| 338 |
+
|
| 339 |
+
def batch_generator(self, tokens, labels=None):
|
| 340 |
+
for i in range(0, len(tokens), self.batch_size):
|
| 341 |
+
batch_tokens = tokens[i: i + self.batch_size]
|
| 342 |
+
batch_tokens = [' '.join(s) for s in batch_tokens]
|
| 343 |
+
if labels:
|
| 344 |
+
batch_labels = torch.tensor(labels.values[i: i + self.batch_size],
|
| 345 |
+
dtype=torch.long,
|
| 346 |
+
device=self.device)
|
| 347 |
+
else:
|
| 348 |
+
batch_labels = None
|
| 349 |
+
if len(batch_tokens) == 1:
|
| 350 |
+
inputs = self.tokenizer.encode_plus(
|
| 351 |
+
batch_tokens,
|
| 352 |
+
None,
|
| 353 |
+
add_special_tokens=True,
|
| 354 |
+
max_length=512,
|
| 355 |
+
truncation=True,
|
| 356 |
+
pad_to_max_length=True,
|
| 357 |
+
return_token_type_ids=True
|
| 358 |
+
)
|
| 359 |
+
else:
|
| 360 |
+
inputs = self.tokenizer.batch_encode_plus(
|
| 361 |
+
batch_tokens,
|
| 362 |
+
add_special_tokens=True,
|
| 363 |
+
max_length=512,
|
| 364 |
+
truncation=True,
|
| 365 |
+
pad_to_max_length=True,
|
| 366 |
+
return_token_type_ids=True
|
| 367 |
+
)
|
| 368 |
+
batch_token_ids = torch.tensor(inputs['input_ids'], device=self.device, dtype=torch.long)
|
| 369 |
+
batch_mask = torch.tensor(inputs['attention_mask'], device=self.device, dtype=torch.long)
|
| 370 |
+
batch_token_type_ids = torch.tensor(inputs["token_type_ids"], device=self.device, dtype=torch.long)
|
| 371 |
+
if len(batch_tokens) == 1:
|
| 372 |
+
batch_token_ids = batch_token_ids.unsqueeze(0)
|
| 373 |
+
batch_mask = batch_mask.unsqueeze(0)
|
| 374 |
+
batch_token_type_ids = batch_token_type_ids.unsqueeze(0)
|
| 375 |
+
batch = {
|
| 376 |
+
'tokens': batch_token_ids,
|
| 377 |
+
'mask': batch_mask,
|
| 378 |
+
'token_type_ids': batch_token_type_ids,
|
| 379 |
+
'labels': batch_labels
|
| 380 |
+
}
|
| 381 |
+
yield batch
|
| 382 |
+
|
| 383 |
+
def fit(self, train_tokens, y_train, test_tokens=None, y_test=None,
|
| 384 |
+
reinitialize=True, stop_epochs=None, show_logs=False):
|
| 385 |
+
if reinitialize:
|
| 386 |
+
self.n_of_classes = y_train.nunique()
|
| 387 |
+
self.initialize_nnet()
|
| 388 |
+
|
| 389 |
+
self.stop_epochs = stop_epochs
|
| 390 |
+
self.print_test = test_tokens and y_test
|
| 391 |
+
train_scores = []
|
| 392 |
+
self.train_scores_mean = []
|
| 393 |
+
self.test_scores = []
|
| 394 |
+
self.test_aucs = []
|
| 395 |
+
self.test_f1 = []
|
| 396 |
+
criterion = nn.CrossEntropyLoss()
|
| 397 |
+
for epoch in tqdm.tqdm(range(self.epochs)):
|
| 398 |
+
self.epoch = epoch
|
| 399 |
+
self.nnet.train()
|
| 400 |
+
train_batches = self.batch_generator(train_tokens, y_train)
|
| 401 |
+
test_batches = self.batch_generator(test_tokens, y_test)
|
| 402 |
+
for i, batch in tqdm.tqdm(
|
| 403 |
+
enumerate(train_batches),
|
| 404 |
+
total=len(train_tokens) // self.batch_size
|
| 405 |
+
):
|
| 406 |
+
pred = self.nnet(batch['tokens'], batch['mask'], batch['token_type_ids'])
|
| 407 |
+
loss = criterion(pred, batch['labels'])
|
| 408 |
+
self.optimizer.zero_grad()
|
| 409 |
+
loss.backward()
|
| 410 |
+
self.optimizer.step()
|
| 411 |
+
if show_logs and i % 400 == 0:
|
| 412 |
+
train_score = criterion(self.nnet(batch['tokens'], batch['mask'], batch['token_type_ids']),
|
| 413 |
+
batch['labels'])
|
| 414 |
+
print(train_score.item())
|
| 415 |
+
train_scores.append(train_score.item())
|
| 416 |
+
if show_logs:
|
| 417 |
+
self.train_scores_mean.append(sum(train_scores) / len(train_scores))
|
| 418 |
+
train_scores = []
|
| 419 |
+
if self.print_test:
|
| 420 |
+
test_pred_prob = torch.tensor([], device='cpu')
|
| 421 |
+
with torch.no_grad():
|
| 422 |
+
self.nnet.eval()
|
| 423 |
+
for batch in test_batches:
|
| 424 |
+
test_batch_pred_prob = self.nnet(batch['tokens'], batch['mask'], batch['token_type_ids'])
|
| 425 |
+
test_batch_pred_prob_cpu = test_batch_pred_prob.to('cpu')
|
| 426 |
+
test_pred_prob = torch.cat((test_pred_prob, test_batch_pred_prob_cpu), 0)
|
| 427 |
+
test_score = criterion(test_pred_prob, torch.tensor(y_test.values, device='cpu'))
|
| 428 |
+
self.test_scores.append(test_score.item())
|
| 429 |
+
test_pred_probas = F.softmax(test_pred_prob).detach().cpu().numpy()
|
| 430 |
+
self.test_aucs.append(get_roc_aucs(y_test, test_pred_probas))
|
| 431 |
+
self.test_f1.append(get_max_f1_score(y_test, test_pred_probas)[0])
|
| 432 |
+
self.print_metrics()
|
| 433 |
+
if self.early_stopping_check():
|
| 434 |
+
break
|
| 435 |
+
|
| 436 |
+
def predict_proba(self, tokens, labels):
|
| 437 |
+
batches = self.batch_generator(tokens, labels)
|
| 438 |
+
pred_probas = torch.tensor([], device=self.device)
|
| 439 |
+
with torch.no_grad():
|
| 440 |
+
self.nnet.eval()
|
| 441 |
+
for batch in batches:
|
| 442 |
+
batch_prob = self.nnet(batch['tokens'], batch['mask'],
|
| 443 |
+
batch['token_type_ids'])
|
| 444 |
+
pred_probas = torch.cat((pred_probas, batch_prob))
|
| 445 |
+
return F.softmax(pred_probas).detach().cpu().numpy()
|
| 446 |
+
|
| 447 |
+
def predict(self, tokens, labels):
|
| 448 |
+
return np.argmax(self.predict_proba(tokens, labels), axis=1)
|
| 449 |
+
|
| 450 |
+
def save_model(self, filepath):
|
| 451 |
+
with open(filepath, 'wb') as file:
|
| 452 |
+
torch.save(self.nnet.state_dict(), file)
|
| 453 |
+
|
| 454 |
+
def load_model(self, filepath):
|
| 455 |
+
self.n_of_classes = 2
|
| 456 |
+
self.nnet = DistilBERTClass(self.n_of_classes).to(self.device)
|
| 457 |
+
self.optimizer = torch.optim.Adam(self.nnet.parameters(), lr=2e-6)
|
| 458 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained(
|
| 459 |
+
'DeepPavlov/distilrubert-small-cased-conversational',
|
| 460 |
+
do_lower_case=True
|
| 461 |
+
)
|
| 462 |
+
self.nnet.load_state_dict(torch.load(filepath, map_location=self.device))
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class AdClassifier:
|
| 466 |
+
|
| 467 |
+
def __init__(self, weights_folder, dictionary_path):
|
| 468 |
+
self.batch_size = 16
|
| 469 |
+
|
| 470 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 471 |
+
|
| 472 |
+
self.pad_idx = 0
|
| 473 |
+
self.unk_idx = 1
|
| 474 |
+
|
| 475 |
+
with open(dictionary_path, 'rb') as file:
|
| 476 |
+
self.word_to_idx = pickle.load(file)
|
| 477 |
+
|
| 478 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained(
|
| 479 |
+
'DeepPavlov/distilrubert-small-cased-conversational',
|
| 480 |
+
do_lower_case=True
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
nationality_nn_path = os.path.join(weights_folder, 'model_nationality.pt')
|
| 484 |
+
families_nn_path = os.path.join(weights_folder, 'model_families.pt')
|
| 485 |
+
sex_nn_path = os.path.join(weights_folder, 'model_sex.pt')
|
| 486 |
+
limit_nn_path = os.path.join(weights_folder, 'model_limit.pt')
|
| 487 |
+
|
| 488 |
+
self.nationality_clf = DBERTClassifier()
|
| 489 |
+
self.nationality_clf.load_model(nationality_nn_path)
|
| 490 |
+
|
| 491 |
+
self.families_clf = DBERTClassifier()
|
| 492 |
+
self.families_clf.load_model(families_nn_path)
|
| 493 |
+
|
| 494 |
+
self.sex_clf = DBERTClassifier()
|
| 495 |
+
self.sex_clf.load_model(sex_nn_path)
|
| 496 |
+
|
| 497 |
+
self.limit_clf = RNNClassifier(bidirectional=True)
|
| 498 |
+
self.limit_clf.load_model(limit_nn_path, amount_of_words=len(self.word_to_idx))
|
| 499 |
+
|
| 500 |
+
def index_tokens(self, tokens_string):
|
| 501 |
+
return [self.word_to_idx.get(token, self.unk_idx) for token in tokens_string]
|
| 502 |
+
|
| 503 |
+
def fill_with_pads(self, tokens):
|
| 504 |
+
tokens = deepcopy(tokens)
|
| 505 |
+
max_len = 0
|
| 506 |
+
for tokens_string in tokens:
|
| 507 |
+
max_len = max(max_len, len(tokens_string))
|
| 508 |
+
for tokens_string in tokens:
|
| 509 |
+
for i in range(len(tokens_string), max_len):
|
| 510 |
+
tokens_string.append(self.pad_idx)
|
| 511 |
+
return tokens
|
| 512 |
+
|
| 513 |
+
def as_matrix(self, tokens):
|
| 514 |
+
tokens = deepcopy(tokens)
|
| 515 |
+
for j, s in enumerate(tokens):
|
| 516 |
+
tokens[j] = self.index_tokens(s)
|
| 517 |
+
tokens = self.fill_with_pads(tokens)
|
| 518 |
+
return tokens
|
| 519 |
+
|
| 520 |
+
def batch_generator(self, tokens):
|
| 521 |
+
for i in range(0, len(tokens), self.batch_size):
|
| 522 |
+
batch_tokens = tokens[i: i + self.batch_size]
|
| 523 |
+
batch_tokens = [' '.join(s) for s in batch_tokens]
|
| 524 |
+
inputs = self.tokenizer.batch_encode_plus(
|
| 525 |
+
batch_tokens,
|
| 526 |
+
add_special_tokens=True,
|
| 527 |
+
max_length=512,
|
| 528 |
+
truncation=True,
|
| 529 |
+
pad_to_max_length=True,
|
| 530 |
+
return_token_type_ids=True
|
| 531 |
+
)
|
| 532 |
+
batch_token_ids = torch.tensor(inputs['input_ids'], device=self.device, dtype=torch.long)
|
| 533 |
+
batch_mask = torch.tensor(inputs['attention_mask'], device=self.device, dtype=torch.long)
|
| 534 |
+
batch_token_type_ids = torch.tensor(inputs['token_type_ids'], device=self.device, dtype=torch.long)
|
| 535 |
+
|
| 536 |
+
batch_tokens_rnn = tokens[i: i + self.batch_size]
|
| 537 |
+
batch_tokens_rnn_ids = torch.tensor(self.as_matrix(batch_tokens_rnn),
|
| 538 |
+
dtype=torch.int,
|
| 539 |
+
device=self.device)
|
| 540 |
+
batch = {
|
| 541 |
+
'tokens': batch_token_ids,
|
| 542 |
+
'mask': batch_mask,
|
| 543 |
+
'token_type_ids': batch_token_type_ids,
|
| 544 |
+
'tokens_rnn': batch_tokens_rnn_ids
|
| 545 |
+
}
|
| 546 |
+
yield batch
|
| 547 |
+
|
| 548 |
+
def predict_probas(self, tokens):
|
| 549 |
+
batches = self.batch_generator(tokens)
|
| 550 |
+
pred_probas = {'nationality': torch.tensor([], device=self.device),
|
| 551 |
+
'families': torch.tensor([], device=self.device),
|
| 552 |
+
'sex': torch.tensor([], device=self.device),
|
| 553 |
+
'limit': torch.tensor([], device=self.device)}
|
| 554 |
+
batch_probas = dict()
|
| 555 |
+
with torch.no_grad():
|
| 556 |
+
self.nationality_clf.nnet.eval()
|
| 557 |
+
self.families_clf.nnet.eval()
|
| 558 |
+
self.sex_clf.nnet.eval()
|
| 559 |
+
self.limit_clf.nnet.eval()
|
| 560 |
+
for batch in batches:
|
| 561 |
+
batch_probas['nationality'] = self.nationality_clf.nnet(batch['tokens'], batch['mask'],
|
| 562 |
+
batch['token_type_ids'])
|
| 563 |
+
batch_probas['families'] = self.families_clf.nnet(batch['tokens'], batch['mask'],
|
| 564 |
+
batch['token_type_ids'])
|
| 565 |
+
batch_probas['sex'] = self.sex_clf.nnet(batch['tokens'], batch['mask'],
|
| 566 |
+
batch['token_type_ids'])
|
| 567 |
+
batch_probas['limit'] = self.limit_clf.nnet(batch['tokens_rnn'])
|
| 568 |
+
for batch_prob_label in batch_probas:
|
| 569 |
+
pred_probas[batch_prob_label] = torch.cat((pred_probas[batch_prob_label],
|
| 570 |
+
batch_probas[batch_prob_label]))
|
| 571 |
+
for pred_prob_label in pred_probas:
|
| 572 |
+
pred_probas[pred_prob_label] = F.softmax(pred_probas[pred_prob_label]).\
|
| 573 |
+
detach().cpu().numpy()
|
| 574 |
+
return pred_probas
|
| 575 |
+
|
| 576 |
+
def predict_labels(self, tokens):
|
| 577 |
+
predicted_probas = self.predict_probas(tokens)
|
| 578 |
+
predicted_labels = dict()
|
| 579 |
+
thresholds = {
|
| 580 |
+
'nationality': 0.75,
|
| 581 |
+
'families': 0.7,
|
| 582 |
+
'sex': 0.25,
|
| 583 |
+
'limit': 0.42
|
| 584 |
+
}
|
| 585 |
+
for label in predicted_probas:
|
| 586 |
+
predicted_labels[label] = predicted_probas[label][:, 1] >= thresholds[label]
|
| 587 |
+
return predicted_labels
|
| 588 |
+
|
| 589 |
+
def save_model(self, filepath):
|
| 590 |
+
with open(filepath, 'wb') as file:
|
| 591 |
+
torch.save(self, file)
|