Spaces:
Runtime error
Runtime error
Shunfeng Zheng
commited on
Update 1_SpatialParse.py
Browse files- 1_SpatialParse.py +398 -388
1_SpatialParse.py
CHANGED
|
@@ -1,416 +1,426 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
-
import importlib.util
|
| 3 |
-
import os
|
| 4 |
-
|
| 5 |
-
# 只在 geospacy 没有被安装时执行安装(避免重复装)
|
| 6 |
-
if importlib.util.find_spec("geospacy") is None:
|
| 7 |
-
subprocess.run(
|
| 8 |
-
["pip", "install", "--no-deps", "-r", "requirements_geospacy.txt"],
|
| 9 |
-
check=True
|
| 10 |
-
)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
import streamlit as st
|
| 14 |
-
from spacy import displacy
|
| 15 |
-
import spacy
|
| 16 |
-
import geospacy
|
| 17 |
-
from PIL import Image
|
| 18 |
-
import base64
|
| 19 |
-
import sys
|
| 20 |
-
import pandas as pd
|
| 21 |
-
import en_core_web_md
|
| 22 |
-
from spacy.tokens import Span, Doc, Token
|
| 23 |
-
from utils import geoutil
|
| 24 |
-
import llm_coding
|
| 25 |
-
import urllib.parse
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
|
| 29 |
-
options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
|
| 30 |
-
|
| 31 |
-
HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
|
| 32 |
-
model = ""
|
| 33 |
-
|
| 34 |
-
gpe_selected = "GPE"
|
| 35 |
-
loc_selected = "LOC"
|
| 36 |
-
rse_selected = "RSE"
|
| 37 |
-
|
| 38 |
-
types = ""
|
| 39 |
-
|
| 40 |
-
#BASE_URL = "http://localhost:8080/"
|
| 41 |
-
BASE_URL = ""
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def set_header():
|
| 46 |
-
LOGO_IMAGE = "tetis-1.png"
|
| 47 |
-
|
| 48 |
-
st.markdown(
|
| 49 |
-
"""
|
| 50 |
-
<style>
|
| 51 |
-
.container {
|
| 52 |
-
display: flex;
|
| 53 |
-
}
|
| 54 |
-
.logo-text {
|
| 55 |
-
font-weight:700 !important;
|
| 56 |
-
font-size:50px !important;
|
| 57 |
-
color: #f9a01b !important;
|
| 58 |
-
padding-left: 10px !important;
|
| 59 |
-
}
|
| 60 |
-
.logo-img {
|
| 61 |
-
float:right;
|
| 62 |
-
width: 28%;
|
| 63 |
-
height: 28%;
|
| 64 |
-
}
|
| 65 |
-
</style>
|
| 66 |
-
""",
|
| 67 |
-
unsafe_allow_html=True
|
| 68 |
-
)
|
| 69 |
-
st.markdown(
|
| 70 |
-
f"""
|
| 71 |
-
<div class="container">
|
| 72 |
-
<img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
|
| 73 |
-
<p class="logo-text">GeOspaCy</p>
|
| 74 |
-
</div>
|
| 75 |
-
""",
|
| 76 |
-
unsafe_allow_html=True
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def set_side_menu():
|
| 82 |
-
|
| 83 |
-
global gpe_selected, loc_selected, rse_selected, model, types
|
| 84 |
-
types =""
|
| 85 |
-
params = st.experimental_get_query_params()
|
| 86 |
-
# params = st.query_params
|
| 87 |
-
# print(params, 777)
|
| 88 |
-
|
| 89 |
-
st.sidebar.markdown("## Spacy Model")
|
| 90 |
-
st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.")
|
| 91 |
-
models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
|
| 92 |
-
if "model" in params:
|
| 93 |
-
default_ix = models.index(params["model"][0])
|
| 94 |
-
else:
|
| 95 |
-
default_ix = models.index('en_core_web_sm')
|
| 96 |
-
model = st.sidebar.selectbox('Spacy Model',models, index=default_ix)
|
| 97 |
-
|
| 98 |
-
st.sidebar.markdown("## Spatial Entity Labels")
|
| 99 |
-
st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?")
|
| 100 |
-
tpes = ""
|
| 101 |
-
if "type" in params:
|
| 102 |
-
tpes = params['type'][0]
|
| 103 |
-
|
| 104 |
-
if "g" in tpes:
|
| 105 |
-
gpe = st.sidebar.checkbox('GPE', value = True)
|
| 106 |
-
else:
|
| 107 |
-
gpe = st.sidebar.checkbox('GPE')
|
| 108 |
-
|
| 109 |
-
if "l" in tpes:
|
| 110 |
-
loc = st.sidebar.checkbox('LOC', value = True)
|
| 111 |
-
else:
|
| 112 |
-
loc = st.sidebar.checkbox('LOC')
|
| 113 |
-
if "r" in tpes:
|
| 114 |
-
rse = st.sidebar.checkbox('RSE', value = True)
|
| 115 |
-
else:
|
| 116 |
-
rse = st.sidebar.checkbox('RSE')
|
| 117 |
-
if(gpe):
|
| 118 |
-
gpe_selected ="GPE"
|
| 119 |
-
types+="g"
|
| 120 |
-
|
| 121 |
-
if(loc):
|
| 122 |
-
loc_selected ="LOC"
|
| 123 |
-
types+="l"
|
| 124 |
-
|
| 125 |
-
if(rse):
|
| 126 |
-
rse_selected ="RSE"
|
| 127 |
-
types+="r"
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
def set_input():
|
| 132 |
-
params = st.experimental_get_query_params()
|
| 133 |
-
# params = st.query_params
|
| 134 |
-
|
| 135 |
-
if "text" not in params:
|
| 136 |
-
text = st.text_area("Input unstructured text:", "")
|
| 137 |
-
else:
|
| 138 |
-
text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0])
|
| 139 |
-
if(st.button("Extract")):
|
| 140 |
-
|
| 141 |
-
# return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.'
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.'
|
| 145 |
-
return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.'
|
| 146 |
-
# return 'Between Burwood and Pyrmont.'
|
| 147 |
-
# return 'Between Burwood and Glebe.'
|
| 148 |
-
# return 'Between Burwood and Darling Harbour.'
|
| 149 |
-
# return 'Between China and USA.'
|
| 150 |
-
# return 'The Burwood city.'
|
| 151 |
-
# text = "New York is north of Washington. Between Burwood and Pyrmont city."
|
| 152 |
-
return text
|
| 153 |
-
|
| 154 |
-
def set_selected_entities(doc):
|
| 155 |
-
global gpe_selected, loc_selected, rse_selected, model
|
| 156 |
-
ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
|
| 157 |
-
|
| 158 |
-
doc.ents = ents
|
| 159 |
-
return doc
|
| 160 |
-
|
| 161 |
-
def extract_spatial_entities(text):
|
| 162 |
-
# nlp = en_core_web_md.load()
|
| 163 |
-
|
| 164 |
-
# nlp = spacy.load("en_core_web_md")
|
| 165 |
-
# nlp.add_pipe("spatial_pipeline", after="ner")
|
| 166 |
-
# doc = nlp(text)
|
| 167 |
-
# doc = set_selected_entities(doc)
|
| 168 |
-
# html = displacy.render(doc, style="ent", options=options)
|
| 169 |
-
# html = html.replace("\n", "")
|
| 170 |
-
# st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
|
| 171 |
-
# show_spatial_ent_table(doc, text)
|
| 172 |
-
|
| 173 |
-
nlp = spacy.load("en_core_web_md") #####
|
| 174 |
-
nlp.add_pipe("spatial_pipeline", after="ner")
|
| 175 |
-
doc = nlp(text)
|
| 176 |
-
|
| 177 |
-
# 分句处理
|
| 178 |
-
sent_ents = []
|
| 179 |
-
sent_texts = []
|
| 180 |
-
sent_rse_id = []
|
| 181 |
-
offset = 0 # 记录当前 token 偏移量
|
| 182 |
-
sent_start_positions = [0] # 记录句子信息
|
| 183 |
-
doc_copy = doc.copy() # 用于展示方程组合
|
| 184 |
-
for sent in doc.sents:
|
| 185 |
-
|
| 186 |
-
sent_doc = nlp(sent.text) # 逐句处理
|
| 187 |
-
sent_doc = set_selected_entities(sent_doc) # 这里处理实体
|
| 188 |
-
sent_texts.append(sent_doc.text)
|
| 189 |
-
|
| 190 |
-
for ent in sent_doc.ents:
|
| 191 |
-
sent_rse_id.append(ent._.rse_id)
|
| 192 |
-
# **调整每个实体的索引,使其匹配完整文本**
|
| 193 |
-
for ent in sent_doc.ents:
|
| 194 |
-
new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
|
| 195 |
-
sent_ents.append(new_ent)
|
| 196 |
-
|
| 197 |
-
offset += len(sent) # 更新偏移量
|
| 198 |
-
sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
|
| 199 |
-
# **创建新 Doc**
|
| 200 |
-
final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
|
| 201 |
-
for i in sent_start_positions: # 手动标记句子起始点
|
| 202 |
-
if i < len(final_doc):
|
| 203 |
-
final_doc[i].is_sent_start = True
|
| 204 |
-
# **设置实体**
|
| 205 |
-
final_doc.set_ents(sent_ents)
|
| 206 |
-
|
| 207 |
-
for i in range(len(sent_rse_id)):
|
| 208 |
-
final_doc.ents[i]._.rse_id = sent_rse_id[i]
|
| 209 |
-
print(doc.ents[0].sent, '原始')
|
| 210 |
-
doc = final_doc
|
| 211 |
-
print(doc.ents[0].sent, '新')
|
| 212 |
-
# 分句处理完毕
|
| 213 |
-
|
| 214 |
-
# doc = set_selected_entities(doc)
|
| 215 |
-
doc.to_disk("saved_doc.spacy")
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
html = displacy.render(doc,style="ent", options = options)
|
| 221 |
-
html = html.replace("\n","")
|
| 222 |
-
st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True)
|
| 223 |
-
show_spatial_ent_table(doc, text)
|
| 224 |
-
|
| 225 |
-
st.markdown("123123")
|
| 226 |
-
|
| 227 |
-
show_sentence_selector_table(doc_copy)
|
| 228 |
-
|
| 229 |
-
def show_sentence_selector_table(doc_copy):
|
| 230 |
-
st.markdown("**______________________________________________________________________________________**")
|
| 231 |
-
st.markdown("**Sentence Selector for Geographic Composition**")
|
| 232 |
-
|
| 233 |
-
# 提取句子
|
| 234 |
-
sentences = list(doc_copy.sents)
|
| 235 |
-
|
| 236 |
-
# 构建表格数据
|
| 237 |
-
rows = []
|
| 238 |
-
for idx, sent in enumerate(sentences):
|
| 239 |
-
sentence_text = sent.text.strip()
|
| 240 |
-
# 生成跳转链接(定位到Tagger)
|
| 241 |
-
url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text)
|
| 242 |
-
new_row = {
|
| 243 |
-
'Sr.': idx + 1,
|
| 244 |
-
'sentence': sentence_text,
|
| 245 |
-
'Select': f'<a target="_self" href="{url}">Select this sentence</a>'
|
| 246 |
-
}
|
| 247 |
-
rows.append(new_row)
|
| 248 |
-
|
| 249 |
-
# 转为 DataFrame 并渲染为 HTML
|
| 250 |
-
df = pd.DataFrame(rows)
|
| 251 |
-
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
def show_spatial_ent_table(doc, text):
|
| 256 |
-
global types
|
| 257 |
-
if len(doc.ents) > 0:
|
| 258 |
-
st.markdown("**______________________________________________________________________________________**")
|
| 259 |
-
st.markdown("**Spatial Entities List**")
|
| 260 |
-
|
| 261 |
-
# 初始化一个空 DataFrame
|
| 262 |
-
df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson'])
|
| 263 |
-
rows = [] # 用于存储所有行
|
| 264 |
-
|
| 265 |
-
for ent in doc.ents:
|
| 266 |
-
url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
| 267 |
-
print(url_map, 'uuurrr')
|
| 268 |
-
print(ent._.rse_id, 'pppp')
|
| 269 |
-
url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
| 270 |
-
|
| 271 |
-
# 创建新行
|
| 272 |
-
new_row = {
|
| 273 |
-
'Sr.': len(rows) + 1,
|
| 274 |
-
'entity': ent.text,
|
| 275 |
-
'label': ent.label_,
|
| 276 |
-
'Map': f'<a target="_self" href="{url_map}">View</a>',
|
| 277 |
-
'GEOJson': f'<a target="_self" href="{url_json}">View</a>'
|
| 278 |
-
}
|
| 279 |
-
|
| 280 |
-
rows.append(new_row) # 将新行添加到列表中
|
| 281 |
-
|
| 282 |
-
# 将所有行转为 DataFrame
|
| 283 |
-
df = pd.DataFrame(rows)
|
| 284 |
-
|
| 285 |
-
# 使用 Streamlit 显示 HTML 表格
|
| 286 |
-
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 287 |
-
|
| 288 |
-
# params = st.experimental_get_query_params()
|
| 289 |
-
# params = st.query_params
|
| 290 |
-
# ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0])
|
| 291 |
-
# print(geoutil.get_ent(params), 'ppppp')
|
| 292 |
-
|
| 293 |
-
def set_header(): # tetis Geospacy LOGO
|
| 294 |
-
LOGO_IMAGE = "title.jpg"
|
| 295 |
-
|
| 296 |
-
st.markdown(
|
| 297 |
-
"""
|
| 298 |
-
<style>
|
| 299 |
-
.container {
|
| 300 |
-
display: flex;
|
| 301 |
-
}
|
| 302 |
-
.logo-text {
|
| 303 |
-
font-weight:700 !important;
|
| 304 |
-
font-size:50px !important;
|
| 305 |
-
color: #52aee3 !important;
|
| 306 |
-
padding-left: 10px !important;
|
| 307 |
-
}
|
| 308 |
-
.logo-img {
|
| 309 |
-
float:right;
|
| 310 |
-
width: 10%;
|
| 311 |
-
height: 10%;
|
| 312 |
-
}
|
| 313 |
-
</style>
|
| 314 |
-
""",
|
| 315 |
-
unsafe_allow_html=True
|
| 316 |
-
)
|
| 317 |
-
st.markdown(
|
| 318 |
-
f"""
|
| 319 |
-
<div class="container">
|
| 320 |
-
<img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
|
| 321 |
-
<p class="logo-text">SpatialParse</p>
|
| 322 |
-
</div>
|
| 323 |
-
""",
|
| 324 |
-
unsafe_allow_html=True
|
| 325 |
-
)
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
|
| 345 |
|
| 346 |
|
| 347 |
-
if "model" in params:
|
| 348 |
-
default_ix = models.index(params["model"][0])
|
| 349 |
-
else:
|
| 350 |
-
default_ix = models.index('GPT-4o')
|
| 351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
|
| 354 |
|
| 355 |
-
model = st.sidebar.selectbox('LLM Model', models, index=default_ix)
|
| 356 |
-
|
| 357 |
-
st.sidebar.markdown("## Spatial Entity Labels")
|
| 358 |
|
| 359 |
-
|
| 360 |
-
tpes = ""
|
| 361 |
-
if "type" in params:
|
| 362 |
-
tpes = params['type'][0]
|
| 363 |
|
| 364 |
-
|
| 365 |
-
if "g" in tpes:
|
| 366 |
-
gpe = st.sidebar.checkbox('GPE', value=True)
|
| 367 |
-
else:
|
| 368 |
-
gpe = st.sidebar.checkbox('GPE')
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
if (gpe):
|
| 382 |
-
gpe_selected = "GPE"
|
| 383 |
-
types += "g"
|
| 384 |
|
| 385 |
-
|
| 386 |
-
loc_selected = "LOC"
|
| 387 |
-
types += "l"
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
|
|
|
|
|
|
|
|
|
| 393 |
|
|
|
|
|
|
|
|
|
|
| 394 |
|
| 395 |
|
| 396 |
|
| 397 |
-
def main():
|
| 398 |
-
global gpe_selected, loc_selected, rse_selected, model
|
| 399 |
-
#print(displacy.templates.TPL_ENT)
|
| 400 |
-
set_header()
|
| 401 |
-
set_side_menu()
|
| 402 |
|
| 403 |
|
| 404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
|
| 412 |
|
| 413 |
-
if __name__ == '__main__':
|
| 414 |
-
|
| 415 |
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
# 这不会失败
|
| 3 |
+
def main():
|
| 4 |
+
import streamlit
|
| 5 |
+
subprocess.run(["pip", "install", "streamlit"])
|
| 6 |
+
main()
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# import subprocess
|
| 12 |
+
# import importlib.util
|
| 13 |
+
# import os
|
| 14 |
+
|
| 15 |
+
# # 只在 geospacy 没有被安装时执行安装(避免重复装)
|
| 16 |
+
# if importlib.util.find_spec("geospacy") is None:
|
| 17 |
+
# subprocess.run(
|
| 18 |
+
# ["pip", "install", "--no-deps", "-r", "requirements_geospacy.txt"],
|
| 19 |
+
# check=True
|
| 20 |
+
# )
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# import streamlit as st
|
| 24 |
+
# from spacy import displacy
|
| 25 |
+
# import spacy
|
| 26 |
+
# import geospacy
|
| 27 |
+
# from PIL import Image
|
| 28 |
+
# import base64
|
| 29 |
+
# import sys
|
| 30 |
+
# import pandas as pd
|
| 31 |
+
# import en_core_web_md
|
| 32 |
+
# from spacy.tokens import Span, Doc, Token
|
| 33 |
+
# from utils import geoutil
|
| 34 |
+
# import llm_coding
|
| 35 |
+
# import urllib.parse
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
|
| 39 |
+
# options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
|
| 40 |
+
|
| 41 |
+
# HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
|
| 42 |
+
# model = ""
|
| 43 |
+
|
| 44 |
+
# gpe_selected = "GPE"
|
| 45 |
+
# loc_selected = "LOC"
|
| 46 |
+
# rse_selected = "RSE"
|
| 47 |
+
|
| 48 |
+
# types = ""
|
| 49 |
+
|
| 50 |
+
# #BASE_URL = "http://localhost:8080/"
|
| 51 |
+
# BASE_URL = ""
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# def set_header():
|
| 56 |
+
# LOGO_IMAGE = "tetis-1.png"
|
| 57 |
+
|
| 58 |
+
# st.markdown(
|
| 59 |
+
# """
|
| 60 |
+
# <style>
|
| 61 |
+
# .container {
|
| 62 |
+
# display: flex;
|
| 63 |
+
# }
|
| 64 |
+
# .logo-text {
|
| 65 |
+
# font-weight:700 !important;
|
| 66 |
+
# font-size:50px !important;
|
| 67 |
+
# color: #f9a01b !important;
|
| 68 |
+
# padding-left: 10px !important;
|
| 69 |
+
# }
|
| 70 |
+
# .logo-img {
|
| 71 |
+
# float:right;
|
| 72 |
+
# width: 28%;
|
| 73 |
+
# height: 28%;
|
| 74 |
+
# }
|
| 75 |
+
# </style>
|
| 76 |
+
# """,
|
| 77 |
+
# unsafe_allow_html=True
|
| 78 |
+
# )
|
| 79 |
+
# st.markdown(
|
| 80 |
+
# f"""
|
| 81 |
+
# <div class="container">
|
| 82 |
+
# <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
|
| 83 |
+
# <p class="logo-text">GeOspaCy</p>
|
| 84 |
+
# </div>
|
| 85 |
+
# """,
|
| 86 |
+
# unsafe_allow_html=True
|
| 87 |
+
# )
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# def set_side_menu():
|
| 92 |
+
|
| 93 |
+
# global gpe_selected, loc_selected, rse_selected, model, types
|
| 94 |
+
# types =""
|
| 95 |
+
# params = st.experimental_get_query_params()
|
| 96 |
+
# # params = st.query_params
|
| 97 |
+
# # print(params, 777)
|
| 98 |
+
|
| 99 |
+
# st.sidebar.markdown("## Spacy Model")
|
| 100 |
+
# st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.")
|
| 101 |
+
# models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
|
| 102 |
+
# if "model" in params:
|
| 103 |
+
# default_ix = models.index(params["model"][0])
|
| 104 |
+
# else:
|
| 105 |
+
# default_ix = models.index('en_core_web_sm')
|
| 106 |
+
# model = st.sidebar.selectbox('Spacy Model',models, index=default_ix)
|
| 107 |
+
|
| 108 |
+
# st.sidebar.markdown("## Spatial Entity Labels")
|
| 109 |
+
# st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?")
|
| 110 |
+
# tpes = ""
|
| 111 |
+
# if "type" in params:
|
| 112 |
+
# tpes = params['type'][0]
|
| 113 |
+
|
| 114 |
+
# if "g" in tpes:
|
| 115 |
+
# gpe = st.sidebar.checkbox('GPE', value = True)
|
| 116 |
+
# else:
|
| 117 |
+
# gpe = st.sidebar.checkbox('GPE')
|
| 118 |
+
|
| 119 |
+
# if "l" in tpes:
|
| 120 |
+
# loc = st.sidebar.checkbox('LOC', value = True)
|
| 121 |
+
# else:
|
| 122 |
+
# loc = st.sidebar.checkbox('LOC')
|
| 123 |
+
# if "r" in tpes:
|
| 124 |
+
# rse = st.sidebar.checkbox('RSE', value = True)
|
| 125 |
+
# else:
|
| 126 |
+
# rse = st.sidebar.checkbox('RSE')
|
| 127 |
+
# if(gpe):
|
| 128 |
+
# gpe_selected ="GPE"
|
| 129 |
+
# types+="g"
|
| 130 |
+
|
| 131 |
+
# if(loc):
|
| 132 |
+
# loc_selected ="LOC"
|
| 133 |
+
# types+="l"
|
| 134 |
+
|
| 135 |
+
# if(rse):
|
| 136 |
+
# rse_selected ="RSE"
|
| 137 |
+
# types+="r"
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# def set_input():
|
| 142 |
+
# params = st.experimental_get_query_params()
|
| 143 |
+
# # params = st.query_params
|
| 144 |
+
|
| 145 |
+
# if "text" not in params:
|
| 146 |
+
# text = st.text_area("Input unstructured text:", "")
|
| 147 |
+
# else:
|
| 148 |
+
# text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0])
|
| 149 |
+
# if(st.button("Extract")):
|
| 150 |
+
|
| 151 |
+
# # return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.'
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.'
|
| 155 |
+
# return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.'
|
| 156 |
+
# # return 'Between Burwood and Pyrmont.'
|
| 157 |
+
# # return 'Between Burwood and Glebe.'
|
| 158 |
+
# # return 'Between Burwood and Darling Harbour.'
|
| 159 |
+
# # return 'Between China and USA.'
|
| 160 |
+
# # return 'The Burwood city.'
|
| 161 |
+
# # text = "New York is north of Washington. Between Burwood and Pyrmont city."
|
| 162 |
+
# return text
|
| 163 |
+
|
| 164 |
+
# def set_selected_entities(doc):
|
| 165 |
+
# global gpe_selected, loc_selected, rse_selected, model
|
| 166 |
+
# ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
|
| 167 |
+
|
| 168 |
+
# doc.ents = ents
|
| 169 |
+
# return doc
|
| 170 |
+
|
| 171 |
+
# def extract_spatial_entities(text):
|
| 172 |
+
# # nlp = en_core_web_md.load()
|
| 173 |
+
|
| 174 |
+
# # nlp = spacy.load("en_core_web_md")
|
| 175 |
+
# # nlp.add_pipe("spatial_pipeline", after="ner")
|
| 176 |
+
# # doc = nlp(text)
|
| 177 |
+
# # doc = set_selected_entities(doc)
|
| 178 |
+
# # html = displacy.render(doc, style="ent", options=options)
|
| 179 |
+
# # html = html.replace("\n", "")
|
| 180 |
+
# # st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
|
| 181 |
+
# # show_spatial_ent_table(doc, text)
|
| 182 |
+
|
| 183 |
+
# nlp = spacy.load("en_core_web_md") #####
|
| 184 |
+
# nlp.add_pipe("spatial_pipeline", after="ner")
|
| 185 |
+
# doc = nlp(text)
|
| 186 |
+
|
| 187 |
+
# # 分句处理
|
| 188 |
+
# sent_ents = []
|
| 189 |
+
# sent_texts = []
|
| 190 |
+
# sent_rse_id = []
|
| 191 |
+
# offset = 0 # 记录当前 token 偏移量
|
| 192 |
+
# sent_start_positions = [0] # 记录句子信息
|
| 193 |
+
# doc_copy = doc.copy() # 用于展示方程组合
|
| 194 |
+
# for sent in doc.sents:
|
| 195 |
+
|
| 196 |
+
# sent_doc = nlp(sent.text) # 逐句处理
|
| 197 |
+
# sent_doc = set_selected_entities(sent_doc) # 这里处理实体
|
| 198 |
+
# sent_texts.append(sent_doc.text)
|
| 199 |
+
|
| 200 |
+
# for ent in sent_doc.ents:
|
| 201 |
+
# sent_rse_id.append(ent._.rse_id)
|
| 202 |
+
# # **调整每个实体的索引,使其匹配完整文本**
|
| 203 |
+
# for ent in sent_doc.ents:
|
| 204 |
+
# new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
|
| 205 |
+
# sent_ents.append(new_ent)
|
| 206 |
+
|
| 207 |
+
# offset += len(sent) # 更新偏移量
|
| 208 |
+
# sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
|
| 209 |
+
# # **创建新 Doc**
|
| 210 |
+
# final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
|
| 211 |
+
# for i in sent_start_positions: # 手动标记句子起始点
|
| 212 |
+
# if i < len(final_doc):
|
| 213 |
+
# final_doc[i].is_sent_start = True
|
| 214 |
+
# # **设置实体**
|
| 215 |
+
# final_doc.set_ents(sent_ents)
|
| 216 |
+
|
| 217 |
+
# for i in range(len(sent_rse_id)):
|
| 218 |
+
# final_doc.ents[i]._.rse_id = sent_rse_id[i]
|
| 219 |
+
# print(doc.ents[0].sent, '原始')
|
| 220 |
+
# doc = final_doc
|
| 221 |
+
# print(doc.ents[0].sent, '新')
|
| 222 |
+
# # 分句处理完毕
|
| 223 |
+
|
| 224 |
+
# # doc = set_selected_entities(doc)
|
| 225 |
+
# doc.to_disk("saved_doc.spacy")
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# html = displacy.render(doc,style="ent", options = options)
|
| 231 |
+
# html = html.replace("\n","")
|
| 232 |
+
# st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True)
|
| 233 |
+
# show_spatial_ent_table(doc, text)
|
| 234 |
+
|
| 235 |
+
# st.markdown("123123")
|
| 236 |
+
|
| 237 |
+
# show_sentence_selector_table(doc_copy)
|
| 238 |
+
|
| 239 |
+
# def show_sentence_selector_table(doc_copy):
|
| 240 |
+
# st.markdown("**______________________________________________________________________________________**")
|
| 241 |
+
# st.markdown("**Sentence Selector for Geographic Composition**")
|
| 242 |
+
|
| 243 |
+
# # 提取句子
|
| 244 |
+
# sentences = list(doc_copy.sents)
|
| 245 |
+
|
| 246 |
+
# # 构建表格数据
|
| 247 |
+
# rows = []
|
| 248 |
+
# for idx, sent in enumerate(sentences):
|
| 249 |
+
# sentence_text = sent.text.strip()
|
| 250 |
+
# # 生成跳转链接(定位到Tagger)
|
| 251 |
+
# url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text)
|
| 252 |
+
# new_row = {
|
| 253 |
+
# 'Sr.': idx + 1,
|
| 254 |
+
# 'sentence': sentence_text,
|
| 255 |
+
# 'Select': f'<a target="_self" href="{url}">Select this sentence</a>'
|
| 256 |
+
# }
|
| 257 |
+
# rows.append(new_row)
|
| 258 |
+
|
| 259 |
+
# # 转为 DataFrame 并渲染为 HTML
|
| 260 |
+
# df = pd.DataFrame(rows)
|
| 261 |
+
# st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
# def show_spatial_ent_table(doc, text):
|
| 266 |
+
# global types
|
| 267 |
+
# if len(doc.ents) > 0:
|
| 268 |
+
# st.markdown("**______________________________________________________________________________________**")
|
| 269 |
+
# st.markdown("**Spatial Entities List**")
|
| 270 |
+
|
| 271 |
+
# # 初始化一个空 DataFrame
|
| 272 |
+
# df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson'])
|
| 273 |
+
# rows = [] # 用于存储所有行
|
| 274 |
+
|
| 275 |
+
# for ent in doc.ents:
|
| 276 |
+
# url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
| 277 |
+
# print(url_map, 'uuurrr')
|
| 278 |
+
# print(ent._.rse_id, 'pppp')
|
| 279 |
+
# url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
| 280 |
+
|
| 281 |
+
# # 创建新行
|
| 282 |
+
# new_row = {
|
| 283 |
+
# 'Sr.': len(rows) + 1,
|
| 284 |
+
# 'entity': ent.text,
|
| 285 |
+
# 'label': ent.label_,
|
| 286 |
+
# 'Map': f'<a target="_self" href="{url_map}">View</a>',
|
| 287 |
+
# 'GEOJson': f'<a target="_self" href="{url_json}">View</a>'
|
| 288 |
+
# }
|
| 289 |
+
|
| 290 |
+
# rows.append(new_row) # 将新行添加到列表中
|
| 291 |
+
|
| 292 |
+
# # 将所有行转为 DataFrame
|
| 293 |
+
# df = pd.DataFrame(rows)
|
| 294 |
+
|
| 295 |
+
# # 使用 Streamlit 显示 HTML 表格
|
| 296 |
+
# st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 297 |
+
|
| 298 |
+
# # params = st.experimental_get_query_params()
|
| 299 |
+
# # params = st.query_params
|
| 300 |
+
# # ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0])
|
| 301 |
+
# # print(geoutil.get_ent(params), 'ppppp')
|
| 302 |
+
|
| 303 |
+
# def set_header(): # tetis Geospacy LOGO
|
| 304 |
+
# LOGO_IMAGE = "title.jpg"
|
| 305 |
+
|
| 306 |
+
# st.markdown(
|
| 307 |
+
# """
|
| 308 |
+
# <style>
|
| 309 |
+
# .container {
|
| 310 |
+
# display: flex;
|
| 311 |
+
# }
|
| 312 |
+
# .logo-text {
|
| 313 |
+
# font-weight:700 !important;
|
| 314 |
+
# font-size:50px !important;
|
| 315 |
+
# color: #52aee3 !important;
|
| 316 |
+
# padding-left: 10px !important;
|
| 317 |
+
# }
|
| 318 |
+
# .logo-img {
|
| 319 |
+
# float:right;
|
| 320 |
+
# width: 10%;
|
| 321 |
+
# height: 10%;
|
| 322 |
+
# }
|
| 323 |
+
# </style>
|
| 324 |
+
# """,
|
| 325 |
+
# unsafe_allow_html=True
|
| 326 |
+
# )
|
| 327 |
+
# st.markdown(
|
| 328 |
+
# f"""
|
| 329 |
+
# <div class="container">
|
| 330 |
+
# <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
|
| 331 |
+
# <p class="logo-text">SpatialParse</p>
|
| 332 |
+
# </div>
|
| 333 |
+
# """,
|
| 334 |
+
# unsafe_allow_html=True
|
| 335 |
+
# )
|
| 336 |
|
| 337 |
+
|
| 338 |
+
# def set_side_menu():
|
| 339 |
+
# global gpe_selected, loc_selected, rse_selected, model, types
|
| 340 |
+
# types = ""
|
| 341 |
+
# params = st.experimental_get_query_params()
|
| 342 |
+
# st.sidebar.markdown("## Deployment Method")
|
| 343 |
+
# st.sidebar.markdown("You can select the deployment method for the model.")
|
| 344 |
+
# deployment_options = ["API", "Local deployment"]
|
| 345 |
+
# use_local_model = st.sidebar.radio("Choose deployment method:", deployment_options, index=0) == "Local deployment"
|
| 346 |
+
|
| 347 |
+
# if use_local_model:
|
| 348 |
+
# local_model_path = st.sidebar.text_input("Enter local model path:", "")
|
| 349 |
+
|
| 350 |
+
# st.sidebar.markdown("## LLM Model")
|
| 351 |
+
# st.sidebar.markdown("You can **select** different *LLM model* powered by API.")
|
| 352 |
+
# models = ['Llama-3-8B', 'Mistral-7B-0.3', 'Gemma-2-10B', 'GPT-4o', 'Gemini Pro', 'Deepseek-R1', 'en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
|
| 353 |
|
| 354 |
|
| 355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
+
# if "model" in params:
|
| 358 |
+
# default_ix = models.index(params["model"][0])
|
| 359 |
+
# else:
|
| 360 |
+
# default_ix = models.index('GPT-4o')
|
| 361 |
|
| 362 |
|
| 363 |
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
+
# model = st.sidebar.selectbox('LLM Model', models, index=default_ix)
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
# st.sidebar.markdown("## Spatial Entity Labels")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
+
# st.sidebar.markdown("Please **Mark** the Spatial Entities you want to extract.")
|
| 370 |
+
# tpes = ""
|
| 371 |
+
# if "type" in params:
|
| 372 |
+
# tpes = params['type'][0]
|
| 373 |
|
| 374 |
+
# st.sidebar.markdown("### Absolute Spatial Entity:")
|
| 375 |
+
# if "g" in tpes:
|
| 376 |
+
# gpe = st.sidebar.checkbox('GPE', value=True)
|
| 377 |
+
# else:
|
| 378 |
+
# gpe = st.sidebar.checkbox('GPE')
|
| 379 |
|
| 380 |
+
# if "l" in tpes:
|
| 381 |
+
# loc = st.sidebar.checkbox('LOC', value=True)
|
| 382 |
+
# else:
|
| 383 |
+
# loc = st.sidebar.checkbox('LOC')
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
+
# st.sidebar.markdown("### Relative Spatial Entity:")
|
|
|
|
|
|
|
| 386 |
|
| 387 |
+
# if "r" in tpes:
|
| 388 |
+
# rse = st.sidebar.checkbox('RSE', value=True)
|
| 389 |
+
# else:
|
| 390 |
+
# rse = st.sidebar.checkbox('RSE')
|
| 391 |
+
# if (gpe):
|
| 392 |
+
# gpe_selected = "GPE"
|
| 393 |
+
# types += "g"
|
| 394 |
|
| 395 |
+
# if (loc):
|
| 396 |
+
# loc_selected = "LOC"
|
| 397 |
+
# types += "l"
|
| 398 |
|
| 399 |
+
# if (rse):
|
| 400 |
+
# rse_selected = "RSE"
|
| 401 |
+
# types += "r"
|
| 402 |
|
| 403 |
|
| 404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
|
| 407 |
+
# def main():
|
| 408 |
+
# global gpe_selected, loc_selected, rse_selected, model
|
| 409 |
+
# #print(displacy.templates.TPL_ENT)
|
| 410 |
+
# set_header()
|
| 411 |
+
# set_side_menu()
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
# text = set_input()
|
| 415 |
|
| 416 |
+
# if(text is not None):
|
| 417 |
+
# extract_spatial_entities(text)
|
| 418 |
+
# elif "text" in st.session_state:
|
| 419 |
+
# text = st.session_state.text
|
| 420 |
+
# extract_spatial_entities(text)
|
| 421 |
|
| 422 |
|
| 423 |
+
# if __name__ == '__main__':
|
| 424 |
+
# main()
|
| 425 |
|
| 426 |
|