File size: 9,328 Bytes
ac845b1
a092611
 
 
 
df850a0
 
 
5148efb
d94d354
14c2a6f
1d1ce1a
d94d354
d059b08
 
 
 
 
 
 
 
 
 
 
 
 
 
9c679fb
ac845b1
 
d94d354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eda45a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
title: HHH - Complete AI Platform
emoji: 🚀
colorFrom: red
colorTo: yellow
sdk: gradio
sdk_version: 4.44.1
app_file: app.py
pinned: true
license: apache-2.0
suggested_hardware: l4x1
suggested_storage: large
tags:
- AI
- Authentication
- Multi-Modal
- HuggingFace
- OpenManus
- Qwen
- DeepSeek
- TTS
- STT
- Face-Swap
- Avatar
- Arabic
- English
- Cloudflare
short_description: Complete AI platform with 200+ models and mobile auth
---

<p align="center">
  <img src="assets/logo.jpg" width="200"/>
</p>

English | [中文](README_zh.md) | [한국어](README_ko.md) | [日本語](README_ja.md)

[![GitHub stars](https://img.shields.io/github/stars/FoundationAgents/OpenManus?style=social)](https://github.com/FoundationAgents/OpenManus/stargazers)
&ensp;
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) &ensp;
[![Discord Follow](https://dcbadge.vercel.app/api/server/DYn29wFk9z?style=flat)](https://discord.gg/DYn29wFk9z)
[![Demo](https://img.shields.io/badge/Demo-Hugging%20Face-yellow)](https://huggingface.co/spaces/lyh-917/OpenManusDemo)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15186407.svg)](https://doi.org/10.5281/zenodo.15186407)

# 👋 OpenManus - Complete AI Platform

🤖 **200+ AI Models + Mobile Authentication + Cloudflare Services**

Manus is incredible, but OpenManus can achieve any idea without an *Invite Code* 🛫!

## 🌟 Environment Variables

Set these in your HuggingFace Space settings for full functionality:

```bash
# Required for full Cloudflare integration
CLOUDFLARE_API_TOKEN=your_cloudflare_token
CLOUDFLARE_ACCOUNT_ID=your_account_id
CLOUDFLARE_D1_DATABASE_ID=your_d1_database_id
CLOUDFLARE_R2_BUCKET_NAME=your_r2_bucket
CLOUDFLARE_KV_NAMESPACE_ID=your_kv_namespace

# Enhanced AI model access
HF_TOKEN=your_huggingface_token
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key

# Application configuration
ENVIRONMENT=production
LOG_LEVEL=INFO
SECRET_KEY=your_secret_key
```

Our team members [@Xinbin Liang](https://github.com/mannaandpoem) and [@Jinyu Xiang](https://github.com/XiangJinyu) (core authors), along with [@Zhaoyang Yu](https://github.com/MoshiQAQ), [@Jiayi Zhang](https://github.com/didiforgithub), and [@Sirui Hong](https://github.com/stellaHSR), we are from [@MetaGPT](https://github.com/geekan/MetaGPT). The prototype is launched within 3 hours and we are keeping building!

It's a simple implementation, so we welcome any suggestions, contributions, and feedback!

Enjoy your own agent with OpenManus!

We're also excited to introduce [OpenManus-RL](https://github.com/OpenManus/OpenManus-RL), an open-source project dedicated to reinforcement learning (RL)- based (such as GRPO) tuning methods for LLM agents, developed collaboratively by researchers from UIUC and OpenManus.

## Project Demo

<video src="https://private-user-images.githubusercontent.com/61239030/420168772-6dcfd0d2-9142-45d9-b74e-d10aa75073c6.mp4?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3NDEzMTgwNTksIm5iZiI6MTc0MTMxNzc1OSwicGF0aCI6Ii82MTIzOTAzMC80MjAxNjg3NzItNmRjZmQwZDItOTE0Mi00NWQ5LWI3NGUtZDEwYWE3NTA3M2M2Lm1wND9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAzMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMzA3VDAzMjIzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTdiZjFkNjlmYWNjMmEzOTliM2Y3M2VlYjgyNDRlZDJmOWE3NWZhZjE1MzhiZWY4YmQ3NjdkNTYwYTU5ZDA2MzYmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.UuHQCgWYkh0OQq9qsUWqGsUbhG3i9jcZDAMeHjLt5T4" data-canonical-src="https://private-user-images.githubusercontent.com/61239030/420168772-6dcfd0d2-9142-45d9-b74e-d10aa75073c6.mp4?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3NDEzMTgwNTksIm5iZiI6MTc0MTMxNzc1OSwicGF0aCI6Ii82MTIzOTAzMC80MjAxNjg3NzItNmRjZmQwZDItOTE0Mi00NWQ5LWI3NGUtZDEwYWE3NTA3M2M2Lm1wND9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAzMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMzA3VDAzMjIzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTdiZjFkNjlmYWNjMmEzOTliM2Y3M2VlYjgyNDRlZDJmOWE3NWZhZjE1MzhiZWY4YmQ3NjdkNTYwYTU5ZDA2MzYmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.UuHQCgWYkh0OQq9qsUWqGsUbhG3i9jcZDAMeHjLt5T4" controls="controls" muted="muted" class="d-block rounded-bottom-2 border-top width-fit" style="max-height:640px; min-height: 200px"></video>

## Installation

We provide two installation methods. Method 2 (using uv) is recommended for faster installation and better dependency management.

### Method 1: Using conda

1. Create a new conda environment:

```bash
conda create -n open_manus python=3.12
conda activate open_manus
```

2. Clone the repository:

```bash
git clone https://github.com/FoundationAgents/OpenManus.git
cd OpenManus
```

3. Install dependencies:

```bash
pip install -r requirements.txt
```

### Method 2: Using uv (Recommended)

1. Install uv (A fast Python package installer and resolver):

```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```

2. Clone the repository:

```bash
git clone https://github.com/FoundationAgents/OpenManus.git
cd OpenManus
```

3. Create a new virtual environment and activate it:

```bash
uv venv --python 3.12
source .venv/bin/activate  # On Unix/macOS
# Or on Windows:
# .venv\Scripts\activate
```

4. Install dependencies:

```bash
uv pip install -r requirements.txt
```

### Browser Automation Tool (Optional)
```bash
playwright install
```

## Configuration

OpenManus requires configuration for the LLM APIs it uses. Follow these steps to set up your configuration:

1. Create a `config.toml` file in the `config` directory (you can copy from the example):

```bash
cp config/config.example.toml config/config.toml
```

2. Edit `config/config.toml` to add your API keys and customize settings:

```toml
# Global LLM configuration
[llm]
model = "gpt-4o"
base_url = "https://api.openai.com/v1"
api_key = "sk-..."  # Replace with your actual API key
max_tokens = 4096
temperature = 0.0

# Optional configuration for specific LLM models
[llm.vision]
model = "gpt-4o"
base_url = "https://api.openai.com/v1"
api_key = "sk-..."  # Replace with your actual API key
```

## Quick Start

One line for run OpenManus:

```bash
python main.py
```

Then input your idea via terminal!

For MCP tool version, you can run:
```bash
python run_mcp.py
```

For unstable multi-agent version, you also can run:

```bash
python run_flow.py
```

### Custom Adding Multiple Agents

Currently, besides the general OpenManus Agent, we have also integrated the DataAnalysis Agent, which is suitable for data analysis and data visualization tasks. You can add this agent to `run_flow` in `config.toml`.

```toml
# Optional configuration for run-flow
[runflow]
use_data_analysis_agent = true     # Disabled by default, change to true to activate
```
In addition, you need to install the relevant dependencies to ensure the agent runs properly: [Detailed Installation Guide](app/tool/chart_visualization/README.md##Installation)

## How to contribute

We welcome any friendly suggestions and helpful contributions! Just create issues or submit pull requests.

Or contact @mannaandpoem via 📧email: mannaandpoem@gmail.com

**Note**: Before submitting a pull request, please use the pre-commit tool to check your changes. Run `pre-commit run --all-files` to execute the checks.

## Community Group
Join our networking group on Feishu and share your experience with other developers!

<div align="center" style="display: flex; gap: 20px;">
    <img src="assets/community_group.jpg" alt="OpenManus 交流群" width="300" />
</div>

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=FoundationAgents/OpenManus&type=Date)](https://star-history.com/#FoundationAgents/OpenManus&Date)

## Sponsors
Thanks to [PPIO](https://ppinfra.com/user/register?invited_by=OCPKCN&utm_source=github_openmanus&utm_medium=github_readme&utm_campaign=link) for computing source support.
> PPIO: The most affordable and easily-integrated MaaS and GPU cloud solution.


## Acknowledgement

Thanks to [anthropic-computer-use](https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo), [browser-use](https://github.com/browser-use/browser-use) and [crawl4ai](https://github.com/unclecode/crawl4ai) for providing basic support for this project!

Additionally, we are grateful to [AAAJ](https://github.com/metauto-ai/agent-as-a-judge), [MetaGPT](https://github.com/geekan/MetaGPT), [OpenHands](https://github.com/All-Hands-AI/OpenHands) and [SWE-agent](https://github.com/SWE-agent/SWE-agent).

We also thank stepfun(阶跃星辰) for supporting our Hugging Face demo space.

OpenManus is built by contributors from MetaGPT. Huge thanks to this agent community!

## Cite
```bibtex
@misc{openmanus2025,
  author = {Xinbin Liang and Jinyu Xiang and Zhaoyang Yu and Jiayi Zhang and Sirui Hong and Sheng Fan and Xiao Tang},
  title = {OpenManus: An open-source framework for building general AI agents},
  year = {2025},
  publisher = {Zenodo},
  doi = {10.5281/zenodo.15186407},
  url = {https://doi.org/10.5281/zenodo.15186407},
}
```