Spaces:
Paused
Paused
File size: 9,328 Bytes
ac845b1 a092611 df850a0 5148efb d94d354 14c2a6f 1d1ce1a d94d354 d059b08 9c679fb ac845b1 d94d354 3eda45a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
---
title: HHH - Complete AI Platform
emoji: 🚀
colorFrom: red
colorTo: yellow
sdk: gradio
sdk_version: 4.44.1
app_file: app.py
pinned: true
license: apache-2.0
suggested_hardware: l4x1
suggested_storage: large
tags:
- AI
- Authentication
- Multi-Modal
- HuggingFace
- OpenManus
- Qwen
- DeepSeek
- TTS
- STT
- Face-Swap
- Avatar
- Arabic
- English
- Cloudflare
short_description: Complete AI platform with 200+ models and mobile auth
---
<p align="center">
<img src="assets/logo.jpg" width="200"/>
</p>
English | [中文](README_zh.md) | [한국어](README_ko.md) | [日本語](README_ja.md)
[](https://github.com/FoundationAgents/OpenManus/stargazers)
 
[](https://opensource.org/licenses/MIT)  
[](https://discord.gg/DYn29wFk9z)
[](https://huggingface.co/spaces/lyh-917/OpenManusDemo)
[](https://doi.org/10.5281/zenodo.15186407)
# 👋 OpenManus - Complete AI Platform
🤖 **200+ AI Models + Mobile Authentication + Cloudflare Services**
Manus is incredible, but OpenManus can achieve any idea without an *Invite Code* 🛫!
## 🌟 Environment Variables
Set these in your HuggingFace Space settings for full functionality:
```bash
# Required for full Cloudflare integration
CLOUDFLARE_API_TOKEN=your_cloudflare_token
CLOUDFLARE_ACCOUNT_ID=your_account_id
CLOUDFLARE_D1_DATABASE_ID=your_d1_database_id
CLOUDFLARE_R2_BUCKET_NAME=your_r2_bucket
CLOUDFLARE_KV_NAMESPACE_ID=your_kv_namespace
# Enhanced AI model access
HF_TOKEN=your_huggingface_token
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key
# Application configuration
ENVIRONMENT=production
LOG_LEVEL=INFO
SECRET_KEY=your_secret_key
```
Our team members [@Xinbin Liang](https://github.com/mannaandpoem) and [@Jinyu Xiang](https://github.com/XiangJinyu) (core authors), along with [@Zhaoyang Yu](https://github.com/MoshiQAQ), [@Jiayi Zhang](https://github.com/didiforgithub), and [@Sirui Hong](https://github.com/stellaHSR), we are from [@MetaGPT](https://github.com/geekan/MetaGPT). The prototype is launched within 3 hours and we are keeping building!
It's a simple implementation, so we welcome any suggestions, contributions, and feedback!
Enjoy your own agent with OpenManus!
We're also excited to introduce [OpenManus-RL](https://github.com/OpenManus/OpenManus-RL), an open-source project dedicated to reinforcement learning (RL)- based (such as GRPO) tuning methods for LLM agents, developed collaboratively by researchers from UIUC and OpenManus.
## Project Demo
<video src="https://private-user-images.githubusercontent.com/61239030/420168772-6dcfd0d2-9142-45d9-b74e-d10aa75073c6.mp4?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3NDEzMTgwNTksIm5iZiI6MTc0MTMxNzc1OSwicGF0aCI6Ii82MTIzOTAzMC80MjAxNjg3NzItNmRjZmQwZDItOTE0Mi00NWQ5LWI3NGUtZDEwYWE3NTA3M2M2Lm1wND9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAzMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMzA3VDAzMjIzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTdiZjFkNjlmYWNjMmEzOTliM2Y3M2VlYjgyNDRlZDJmOWE3NWZhZjE1MzhiZWY4YmQ3NjdkNTYwYTU5ZDA2MzYmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.UuHQCgWYkh0OQq9qsUWqGsUbhG3i9jcZDAMeHjLt5T4" data-canonical-src="https://private-user-images.githubusercontent.com/61239030/420168772-6dcfd0d2-9142-45d9-b74e-d10aa75073c6.mp4?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3NDEzMTgwNTksIm5iZiI6MTc0MTMxNzc1OSwicGF0aCI6Ii82MTIzOTAzMC80MjAxNjg3NzItNmRjZmQwZDItOTE0Mi00NWQ5LWI3NGUtZDEwYWE3NTA3M2M2Lm1wND9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAzMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMzA3VDAzMjIzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTdiZjFkNjlmYWNjMmEzOTliM2Y3M2VlYjgyNDRlZDJmOWE3NWZhZjE1MzhiZWY4YmQ3NjdkNTYwYTU5ZDA2MzYmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.UuHQCgWYkh0OQq9qsUWqGsUbhG3i9jcZDAMeHjLt5T4" controls="controls" muted="muted" class="d-block rounded-bottom-2 border-top width-fit" style="max-height:640px; min-height: 200px"></video>
## Installation
We provide two installation methods. Method 2 (using uv) is recommended for faster installation and better dependency management.
### Method 1: Using conda
1. Create a new conda environment:
```bash
conda create -n open_manus python=3.12
conda activate open_manus
```
2. Clone the repository:
```bash
git clone https://github.com/FoundationAgents/OpenManus.git
cd OpenManus
```
3. Install dependencies:
```bash
pip install -r requirements.txt
```
### Method 2: Using uv (Recommended)
1. Install uv (A fast Python package installer and resolver):
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
2. Clone the repository:
```bash
git clone https://github.com/FoundationAgents/OpenManus.git
cd OpenManus
```
3. Create a new virtual environment and activate it:
```bash
uv venv --python 3.12
source .venv/bin/activate # On Unix/macOS
# Or on Windows:
# .venv\Scripts\activate
```
4. Install dependencies:
```bash
uv pip install -r requirements.txt
```
### Browser Automation Tool (Optional)
```bash
playwright install
```
## Configuration
OpenManus requires configuration for the LLM APIs it uses. Follow these steps to set up your configuration:
1. Create a `config.toml` file in the `config` directory (you can copy from the example):
```bash
cp config/config.example.toml config/config.toml
```
2. Edit `config/config.toml` to add your API keys and customize settings:
```toml
# Global LLM configuration
[llm]
model = "gpt-4o"
base_url = "https://api.openai.com/v1"
api_key = "sk-..." # Replace with your actual API key
max_tokens = 4096
temperature = 0.0
# Optional configuration for specific LLM models
[llm.vision]
model = "gpt-4o"
base_url = "https://api.openai.com/v1"
api_key = "sk-..." # Replace with your actual API key
```
## Quick Start
One line for run OpenManus:
```bash
python main.py
```
Then input your idea via terminal!
For MCP tool version, you can run:
```bash
python run_mcp.py
```
For unstable multi-agent version, you also can run:
```bash
python run_flow.py
```
### Custom Adding Multiple Agents
Currently, besides the general OpenManus Agent, we have also integrated the DataAnalysis Agent, which is suitable for data analysis and data visualization tasks. You can add this agent to `run_flow` in `config.toml`.
```toml
# Optional configuration for run-flow
[runflow]
use_data_analysis_agent = true # Disabled by default, change to true to activate
```
In addition, you need to install the relevant dependencies to ensure the agent runs properly: [Detailed Installation Guide](app/tool/chart_visualization/README.md##Installation)
## How to contribute
We welcome any friendly suggestions and helpful contributions! Just create issues or submit pull requests.
Or contact @mannaandpoem via 📧email: mannaandpoem@gmail.com
**Note**: Before submitting a pull request, please use the pre-commit tool to check your changes. Run `pre-commit run --all-files` to execute the checks.
## Community Group
Join our networking group on Feishu and share your experience with other developers!
<div align="center" style="display: flex; gap: 20px;">
<img src="assets/community_group.jpg" alt="OpenManus 交流群" width="300" />
</div>
## Star History
[](https://star-history.com/#FoundationAgents/OpenManus&Date)
## Sponsors
Thanks to [PPIO](https://ppinfra.com/user/register?invited_by=OCPKCN&utm_source=github_openmanus&utm_medium=github_readme&utm_campaign=link) for computing source support.
> PPIO: The most affordable and easily-integrated MaaS and GPU cloud solution.
## Acknowledgement
Thanks to [anthropic-computer-use](https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo), [browser-use](https://github.com/browser-use/browser-use) and [crawl4ai](https://github.com/unclecode/crawl4ai) for providing basic support for this project!
Additionally, we are grateful to [AAAJ](https://github.com/metauto-ai/agent-as-a-judge), [MetaGPT](https://github.com/geekan/MetaGPT), [OpenHands](https://github.com/All-Hands-AI/OpenHands) and [SWE-agent](https://github.com/SWE-agent/SWE-agent).
We also thank stepfun(阶跃星辰) for supporting our Hugging Face demo space.
OpenManus is built by contributors from MetaGPT. Huge thanks to this agent community!
## Cite
```bibtex
@misc{openmanus2025,
author = {Xinbin Liang and Jinyu Xiang and Zhaoyang Yu and Jiayi Zhang and Sirui Hong and Sheng Fan and Xiao Tang},
title = {OpenManus: An open-source framework for building general AI agents},
year = {2025},
publisher = {Zenodo},
doi = {10.5281/zenodo.15186407},
url = {https://doi.org/10.5281/zenodo.15186407},
}
```
|