Spaces:
Paused
Paused
File size: 9,840 Bytes
d94d354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import asyncio
import json
from typing import Any, List, Optional, Union
from pydantic import Field
from app.agent.react import ReActAgent
from app.exceptions import TokenLimitExceeded
from app.logger import logger
from app.prompt.toolcall import NEXT_STEP_PROMPT, SYSTEM_PROMPT
from app.schema import TOOL_CHOICE_TYPE, AgentState, Message, ToolCall, ToolChoice
from app.tool import CreateChatCompletion, Terminate, ToolCollection
TOOL_CALL_REQUIRED = "Tool calls required but none provided"
class ToolCallAgent(ReActAgent):
"""Base agent class for handling tool/function calls with enhanced abstraction"""
name: str = "toolcall"
description: str = "an agent that can execute tool calls."
system_prompt: str = SYSTEM_PROMPT
next_step_prompt: str = NEXT_STEP_PROMPT
available_tools: ToolCollection = ToolCollection(
CreateChatCompletion(), Terminate()
)
tool_choices: TOOL_CHOICE_TYPE = ToolChoice.AUTO # type: ignore
special_tool_names: List[str] = Field(default_factory=lambda: [Terminate().name])
tool_calls: List[ToolCall] = Field(default_factory=list)
_current_base64_image: Optional[str] = None
max_steps: int = 30
max_observe: Optional[Union[int, bool]] = None
async def think(self) -> bool:
"""Process current state and decide next actions using tools"""
if self.next_step_prompt:
user_msg = Message.user_message(self.next_step_prompt)
self.messages += [user_msg]
try:
# Get response with tool options
response = await self.llm.ask_tool(
messages=self.messages,
system_msgs=(
[Message.system_message(self.system_prompt)]
if self.system_prompt
else None
),
tools=self.available_tools.to_params(),
tool_choice=self.tool_choices,
)
except ValueError:
raise
except Exception as e:
# Check if this is a RetryError containing TokenLimitExceeded
if hasattr(e, "__cause__") and isinstance(e.__cause__, TokenLimitExceeded):
token_limit_error = e.__cause__
logger.error(
f"π¨ Token limit error (from RetryError): {token_limit_error}"
)
self.memory.add_message(
Message.assistant_message(
f"Maximum token limit reached, cannot continue execution: {str(token_limit_error)}"
)
)
self.state = AgentState.FINISHED
return False
raise
self.tool_calls = tool_calls = (
response.tool_calls if response and response.tool_calls else []
)
content = response.content if response and response.content else ""
# Log response info
logger.info(f"β¨ {self.name}'s thoughts: {content}")
logger.info(
f"π οΈ {self.name} selected {len(tool_calls) if tool_calls else 0} tools to use"
)
if tool_calls:
logger.info(
f"π§° Tools being prepared: {[call.function.name for call in tool_calls]}"
)
logger.info(f"π§ Tool arguments: {tool_calls[0].function.arguments}")
try:
if response is None:
raise RuntimeError("No response received from the LLM")
# Handle different tool_choices modes
if self.tool_choices == ToolChoice.NONE:
if tool_calls:
logger.warning(
f"π€ Hmm, {self.name} tried to use tools when they weren't available!"
)
if content:
self.memory.add_message(Message.assistant_message(content))
return True
return False
# Create and add assistant message
assistant_msg = (
Message.from_tool_calls(content=content, tool_calls=self.tool_calls)
if self.tool_calls
else Message.assistant_message(content)
)
self.memory.add_message(assistant_msg)
if self.tool_choices == ToolChoice.REQUIRED and not self.tool_calls:
return True # Will be handled in act()
# For 'auto' mode, continue with content if no commands but content exists
if self.tool_choices == ToolChoice.AUTO and not self.tool_calls:
return bool(content)
return bool(self.tool_calls)
except Exception as e:
logger.error(f"π¨ Oops! The {self.name}'s thinking process hit a snag: {e}")
self.memory.add_message(
Message.assistant_message(
f"Error encountered while processing: {str(e)}"
)
)
return False
async def act(self) -> str:
"""Execute tool calls and handle their results"""
if not self.tool_calls:
if self.tool_choices == ToolChoice.REQUIRED:
raise ValueError(TOOL_CALL_REQUIRED)
# Return last message content if no tool calls
return self.messages[-1].content or "No content or commands to execute"
results = []
for command in self.tool_calls:
# Reset base64_image for each tool call
self._current_base64_image = None
result = await self.execute_tool(command)
if self.max_observe:
result = result[: self.max_observe]
logger.info(
f"π― Tool '{command.function.name}' completed its mission! Result: {result}"
)
# Add tool response to memory
tool_msg = Message.tool_message(
content=result,
tool_call_id=command.id,
name=command.function.name,
base64_image=self._current_base64_image,
)
self.memory.add_message(tool_msg)
results.append(result)
return "\n\n".join(results)
async def execute_tool(self, command: ToolCall) -> str:
"""Execute a single tool call with robust error handling"""
if not command or not command.function or not command.function.name:
return "Error: Invalid command format"
name = command.function.name
if name not in self.available_tools.tool_map:
return f"Error: Unknown tool '{name}'"
try:
# Parse arguments
args = json.loads(command.function.arguments or "{}")
# Execute the tool
logger.info(f"π§ Activating tool: '{name}'...")
result = await self.available_tools.execute(name=name, tool_input=args)
# Handle special tools
await self._handle_special_tool(name=name, result=result)
# Check if result is a ToolResult with base64_image
if hasattr(result, "base64_image") and result.base64_image:
# Store the base64_image for later use in tool_message
self._current_base64_image = result.base64_image
# Format result for display (standard case)
observation = (
f"Observed output of cmd `{name}` executed:\n{str(result)}"
if result
else f"Cmd `{name}` completed with no output"
)
return observation
except json.JSONDecodeError:
error_msg = f"Error parsing arguments for {name}: Invalid JSON format"
logger.error(
f"π Oops! The arguments for '{name}' don't make sense - invalid JSON, arguments:{command.function.arguments}"
)
return f"Error: {error_msg}"
except Exception as e:
error_msg = f"β οΈ Tool '{name}' encountered a problem: {str(e)}"
logger.exception(error_msg)
return f"Error: {error_msg}"
async def _handle_special_tool(self, name: str, result: Any, **kwargs):
"""Handle special tool execution and state changes"""
if not self._is_special_tool(name):
return
if self._should_finish_execution(name=name, result=result, **kwargs):
# Set agent state to finished
logger.info(f"π Special tool '{name}' has completed the task!")
self.state = AgentState.FINISHED
@staticmethod
def _should_finish_execution(**kwargs) -> bool:
"""Determine if tool execution should finish the agent"""
return True
def _is_special_tool(self, name: str) -> bool:
"""Check if tool name is in special tools list"""
return name.lower() in [n.lower() for n in self.special_tool_names]
async def cleanup(self):
"""Clean up resources used by the agent's tools."""
logger.info(f"π§Ή Cleaning up resources for agent '{self.name}'...")
for tool_name, tool_instance in self.available_tools.tool_map.items():
if hasattr(tool_instance, "cleanup") and asyncio.iscoroutinefunction(
tool_instance.cleanup
):
try:
logger.debug(f"π§Ό Cleaning up tool: {tool_name}")
await tool_instance.cleanup()
except Exception as e:
logger.error(
f"π¨ Error cleaning up tool '{tool_name}': {e}", exc_info=True
)
logger.info(f"β¨ Cleanup complete for agent '{self.name}'.")
async def run(self, request: Optional[str] = None) -> str:
"""Run the agent with cleanup when done."""
try:
return await super().run(request)
finally:
await self.cleanup()
|