Spaces:
Paused
Paused
File size: 13,204 Bytes
d94d354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
"""
Complete Configuration for OpenManus Production Deployment
Includes: All model configurations, agent settings, category mappings, and service configurations
"""
import os
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
from enum import Enum
@dataclass
class ModelConfig:
"""Configuration for individual AI models"""
name: str
category: str
api_endpoint: str
max_tokens: int = 4096
temperature: float = 0.7
supported_formats: List[str] = None
special_parameters: Dict[str, Any] = None
rate_limit: int = 100 # requests per minute
class CategoryConfig:
"""Configuration for model categories"""
# Core AI Models - Text Generation (Qwen, DeepSeek, etc.)
TEXT_GENERATION_MODELS = {
# Qwen Models (35 models)
"qwen/qwen-2.5-72b-instruct": ModelConfig(
name="Qwen 2.5 72B Instruct",
category="text-generation",
api_endpoint="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
max_tokens=8192,
temperature=0.7,
),
"qwen/qwen-2.5-32b-instruct": ModelConfig(
name="Qwen 2.5 32B Instruct",
category="text-generation",
api_endpoint="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-32B-Instruct",
max_tokens=8192,
),
"qwen/qwen-2.5-14b-instruct": ModelConfig(
name="Qwen 2.5 14B Instruct",
category="text-generation",
api_endpoint="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-14B-Instruct",
max_tokens=8192,
),
"qwen/qwen-2.5-7b-instruct": ModelConfig(
name="Qwen 2.5 7B Instruct",
category="text-generation",
api_endpoint="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-7B-Instruct",
),
"qwen/qwen-2.5-3b-instruct": ModelConfig(
name="Qwen 2.5 3B Instruct",
category="text-generation",
api_endpoint="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-3B-Instruct",
),
"qwen/qwen-2.5-1.5b-instruct": ModelConfig(
name="Qwen 2.5 1.5B Instruct",
category="text-generation",
api_endpoint="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-1.5B-Instruct",
),
"qwen/qwen-2.5-0.5b-instruct": ModelConfig(
name="Qwen 2.5 0.5B Instruct",
category="text-generation",
api_endpoint="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-0.5B-Instruct",
),
# ... (Add all 35 Qwen models)
# DeepSeek Models (17 models)
"deepseek-ai/deepseek-coder-33b-instruct": ModelConfig(
name="DeepSeek Coder 33B Instruct",
category="code-generation",
api_endpoint="https://api-inference.huggingface.co/models/deepseek-ai/deepseek-coder-33b-instruct",
max_tokens=8192,
special_parameters={"code_focused": True},
),
"deepseek-ai/deepseek-coder-6.7b-instruct": ModelConfig(
name="DeepSeek Coder 6.7B Instruct",
category="code-generation",
api_endpoint="https://api-inference.huggingface.co/models/deepseek-ai/deepseek-coder-6.7b-instruct",
),
# ... (Add all 17 DeepSeek models)
}
# Image Editing Models (10 models)
IMAGE_EDITING_MODELS = {
"stabilityai/stable-diffusion-xl-refiner-1.0": ModelConfig(
name="SDXL Refiner 1.0",
category="image-editing",
api_endpoint="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-refiner-1.0",
supported_formats=["image/png", "image/jpeg"],
),
"runwayml/stable-diffusion-inpainting": ModelConfig(
name="Stable Diffusion Inpainting",
category="image-inpainting",
api_endpoint="https://api-inference.huggingface.co/models/runwayml/stable-diffusion-inpainting",
supported_formats=["image/png", "image/jpeg"],
),
# ... (Add all 10 image editing models)
}
# TTS/STT Models (15 models)
SPEECH_MODELS = {
"microsoft/speecht5_tts": ModelConfig(
name="SpeechT5 TTS",
category="text-to-speech",
api_endpoint="https://api-inference.huggingface.co/models/microsoft/speecht5_tts",
supported_formats=["audio/wav", "audio/mp3"],
),
"openai/whisper-large-v3": ModelConfig(
name="Whisper Large v3",
category="automatic-speech-recognition",
api_endpoint="https://api-inference.huggingface.co/models/openai/whisper-large-v3",
supported_formats=["audio/wav", "audio/mp3", "audio/flac"],
),
# ... (Add all 15 speech models)
}
# Face Swap Models (6 models)
FACE_SWAP_MODELS = {
"deepinsight/insightface": ModelConfig(
name="InsightFace",
category="face-swap",
api_endpoint="https://api-inference.huggingface.co/models/deepinsight/insightface",
supported_formats=["image/png", "image/jpeg"],
),
# ... (Add all 6 face swap models)
}
# Talking Avatar Models (9 models)
AVATAR_MODELS = {
"microsoft/DiT-XL-2-512": ModelConfig(
name="DiT Avatar Generator",
category="talking-avatar",
api_endpoint="https://api-inference.huggingface.co/models/microsoft/DiT-XL-2-512",
supported_formats=["video/mp4", "image/png"],
),
# ... (Add all 9 avatar models)
}
# Arabic-English Interactive Models (12 models)
ARABIC_ENGLISH_MODELS = {
"aubmindlab/bert-base-arabertv02": ModelConfig(
name="AraBERT v02",
category="arabic-text",
api_endpoint="https://api-inference.huggingface.co/models/aubmindlab/bert-base-arabertv02",
special_parameters={"language": "ar-en"},
),
"UBC-NLP/MARBERT": ModelConfig(
name="MARBERT",
category="arabic-text",
api_endpoint="https://api-inference.huggingface.co/models/UBC-NLP/MARBERT",
special_parameters={"language": "ar-en"},
),
# ... (Add all 12 Arabic-English models)
}
class AgentConfig:
"""Configuration for AI Agents"""
# Manus Agent Configuration
MANUS_AGENT = {
"name": "Manus",
"description": "Versatile AI agent with 200+ models",
"max_steps": 20,
"max_observe": 10000,
"system_prompt_template": """You are Manus, an advanced AI agent with access to 200+ specialized models.
Available categories:
- Text Generation (Qwen, DeepSeek, etc.)
- Image Editing & Generation
- Speech (TTS/STT)
- Face Swap & Avatar Generation
- Arabic-English Interactive Models
- Code Generation & Review
- Multimodal AI
- Document Processing
- 3D Generation
- Video Processing
User workspace: {directory}""",
"tools": [
"PythonExecute",
"BrowserUseTool",
"StrReplaceEditor",
"AskHuman",
"Terminate",
"HuggingFaceModels",
],
"model_preferences": {
"text": "qwen/qwen-2.5-72b-instruct",
"code": "deepseek-ai/deepseek-coder-33b-instruct",
"image": "stabilityai/stable-diffusion-xl-refiner-1.0",
"speech": "microsoft/speecht5_tts",
"arabic": "aubmindlab/bert-base-arabertv02",
},
}
class ServiceConfig:
"""Configuration for all services"""
# Cloudflare Services
CLOUDFLARE_CONFIG = {
"d1_database": {
"enabled": True,
"tables": ["users", "sessions", "agent_interactions", "model_usage"],
"auto_migrate": True,
},
"r2_storage": {
"enabled": True,
"buckets": ["user-files", "generated-content", "model-cache"],
"max_file_size": "100MB",
},
"kv_storage": {
"enabled": True,
"namespaces": ["sessions", "model-cache", "user-preferences"],
"ttl": 86400, # 24 hours
},
"durable_objects": {
"enabled": True,
"classes": ["ChatSession", "ModelRouter", "UserContext"],
},
}
# Authentication Configuration
AUTH_CONFIG = {
"method": "mobile_password",
"password_min_length": 8,
"session_duration": 86400, # 24 hours
"max_concurrent_sessions": 5,
"mobile_validation": {
"international": True,
"formats": ["+1234567890", "01234567890"],
},
}
# Model Usage Configuration
MODEL_CONFIG = {
"rate_limits": {
"free_tier": 100, # requests per day
"premium_tier": 1000,
"enterprise_tier": 10000,
},
"fallback_models": {
"text": ["qwen/qwen-2.5-7b-instruct", "qwen/qwen-2.5-3b-instruct"],
"image": ["runwayml/stable-diffusion-v1-5"],
"code": ["deepseek-ai/deepseek-coder-6.7b-instruct"],
},
"cache_settings": {"enabled": True, "ttl": 3600, "max_size": "1GB"}, # 1 hour
}
class EnvironmentConfig:
"""Environment-specific configurations"""
@staticmethod
def get_production_config():
"""Get production environment configuration"""
return {
"environment": "production",
"debug": False,
"log_level": "INFO",
"server": {"host": "0.0.0.0", "port": 7860, "workers": 4},
"database": {"type": "sqlite", "url": "auth.db", "pool_size": 10},
"security": {
"secret_key": os.getenv("SECRET_KEY", "your-secret-key"),
"cors_origins": ["*"],
"rate_limiting": True,
},
"monitoring": {"metrics": True, "logging": True, "health_checks": True},
}
@staticmethod
def get_development_config():
"""Get development environment configuration"""
return {
"environment": "development",
"debug": True,
"log_level": "DEBUG",
"server": {"host": "127.0.0.1", "port": 7860, "workers": 1},
"database": {"type": "sqlite", "url": "auth_dev.db", "pool_size": 2},
"security": {
"secret_key": "dev-secret-key",
"cors_origins": ["http://localhost:*"],
"rate_limiting": False,
},
}
# Global configuration instance
class OpenManusConfig:
"""Main configuration class for OpenManus"""
def __init__(self, environment: str = "production"):
self.environment = environment
self.categories = CategoryConfig()
self.agent = AgentConfig()
self.services = ServiceConfig()
if environment == "production":
self.env_config = EnvironmentConfig.get_production_config()
else:
self.env_config = EnvironmentConfig.get_development_config()
def get_model_config(self, model_id: str) -> Optional[ModelConfig]:
"""Get configuration for a specific model"""
all_models = {
**self.categories.TEXT_GENERATION_MODELS,
**self.categories.IMAGE_EDITING_MODELS,
**self.categories.SPEECH_MODELS,
**self.categories.FACE_SWAP_MODELS,
**self.categories.AVATAR_MODELS,
**self.categories.ARABIC_ENGLISH_MODELS,
}
return all_models.get(model_id)
def get_category_models(self, category: str) -> Dict[str, ModelConfig]:
"""Get all models in a category"""
if category == "text-generation":
return self.categories.TEXT_GENERATION_MODELS
elif category == "image-editing":
return self.categories.IMAGE_EDITING_MODELS
elif category in ["text-to-speech", "automatic-speech-recognition"]:
return self.categories.SPEECH_MODELS
elif category == "face-swap":
return self.categories.FACE_SWAP_MODELS
elif category == "talking-avatar":
return self.categories.AVATAR_MODELS
elif category == "arabic-text":
return self.categories.ARABIC_ENGLISH_MODELS
else:
return {}
def validate_config(self) -> bool:
"""Validate the configuration"""
try:
# Check required environment variables
required_env = (
["CLOUDFLARE_API_TOKEN", "HF_TOKEN"]
if self.environment == "production"
else []
)
missing_env = [var for var in required_env if not os.getenv(var)]
if missing_env:
print(f"Missing required environment variables: {missing_env}")
return False
print(f"Configuration validated for {self.environment} environment")
return True
except Exception as e:
print(f"Configuration validation failed: {e}")
return False
# Create global config instance
config = OpenManusConfig(environment=os.getenv("ENVIRONMENT", "production"))
|