uhhjj / app.py
Speedofmastery's picture
Complete: All 200+ AI models + Cloudflare services (D1, R2, KV, Durable Objects) integration
04f4e13
raw
history blame
28 kB
import gradio as gr
import os
import json
import sqlite3
import hashlib
import datetime
from pathlib import Path
# Cloudflare configuration
CLOUDFLARE_CONFIG = {
"api_token": os.getenv("CLOUDFLARE_API_TOKEN", ""),
"account_id": os.getenv("CLOUDFLARE_ACCOUNT_ID", ""),
"d1_database_id": os.getenv("CLOUDFLARE_D1_DATABASE_ID", ""),
"r2_bucket_name": os.getenv("CLOUDFLARE_R2_BUCKET_NAME", ""),
"kv_namespace_id": os.getenv("CLOUDFLARE_KV_NAMESPACE_ID", ""),
"durable_objects_id": os.getenv("CLOUDFLARE_DURABLE_OBJECTS_ID", "")
}
# AI Model Categories with 200+ models
AI_MODELS = {
"Text Generation": {
"Qwen Models": [
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-32B-Instruct", "Qwen/Qwen2.5-14B-Instruct",
"Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-1.5B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct", "Qwen/Qwen2-72B-Instruct", "Qwen/Qwen2-57B-A14B-Instruct",
"Qwen/Qwen2-7B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-0.5B-Instruct",
"Qwen/Qwen1.5-110B-Chat", "Qwen/Qwen1.5-72B-Chat", "Qwen/Qwen1.5-32B-Chat",
"Qwen/Qwen1.5-14B-Chat", "Qwen/Qwen1.5-7B-Chat", "Qwen/Qwen1.5-4B-Chat",
"Qwen/Qwen1.5-1.8B-Chat", "Qwen/Qwen1.5-0.5B-Chat", "Qwen/CodeQwen1.5-7B-Chat",
"Qwen/Qwen2.5-Math-72B-Instruct", "Qwen/Qwen2.5-Math-7B-Instruct", "Qwen/Qwen2.5-Coder-32B-Instruct",
"Qwen/Qwen2.5-Coder-14B-Instruct", "Qwen/Qwen2.5-Coder-7B-Instruct", "Qwen/Qwen2.5-Coder-3B-Instruct",
"Qwen/Qwen2.5-Coder-1.5B-Instruct", "Qwen/Qwen2.5-Coder-0.5B-Instruct", "Qwen/QwQ-32B-Preview",
"Qwen/Qwen2-VL-72B-Instruct", "Qwen/Qwen2-VL-7B-Instruct", "Qwen/Qwen2-VL-2B-Instruct",
"Qwen/Qwen2-Audio-7B-Instruct", "Qwen/Qwen-Agent-Chat", "Qwen/Qwen-VL-Chat"
],
"DeepSeek Models": [
"deepseek-ai/deepseek-llm-67b-chat", "deepseek-ai/deepseek-llm-7b-chat",
"deepseek-ai/deepseek-coder-33b-instruct", "deepseek-ai/deepseek-coder-7b-instruct",
"deepseek-ai/deepseek-coder-6.7b-instruct", "deepseek-ai/deepseek-coder-1.3b-instruct",
"deepseek-ai/DeepSeek-V2-Chat", "deepseek-ai/DeepSeek-V2-Lite-Chat",
"deepseek-ai/deepseek-math-7b-instruct", "deepseek-ai/deepseek-moe-16b-chat",
"deepseek-ai/deepseek-vl-7b-chat", "deepseek-ai/deepseek-vl-1.3b-chat",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"deepseek-ai/DeepSeek-Reasoner-R1"
]
},
"Image Processing": {
"Image Generation": [
"black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-pro",
"runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/stable-diffusion-3-medium-diffusers", "stabilityai/sd-turbo",
"kandinsky-community/kandinsky-2-2-decoder", "playgroundai/playground-v2.5-1024px-aesthetic",
"midjourney/midjourney-v6"
],
"Image Editing": [
"timbrooks/instruct-pix2pix", "runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-xl-refiner-1.0", "lllyasviel/control_v11p_sd15_inpaint",
"SG161222/RealVisXL_V4.0", "ByteDance/SDXL-Lightning", "segmind/SSD-1B",
"segmind/Segmind-Vega", "playgroundai/playground-v2-1024px-aesthetic",
"stabilityai/stable-cascade"
],
"Face Processing": [
"InsightFace/inswapper_128.onnx", "deepinsight/insightface", "TencentARC/GFPGAN",
"sczhou/CodeFormer", "xinntao/Real-ESRGAN", "ESRGAN/ESRGAN"
]
},
"Audio Processing": {
"Text-to-Speech": [
"microsoft/speecht5_tts", "facebook/mms-tts-eng", "facebook/mms-tts-ara",
"coqui/XTTS-v2", "suno/bark", "parler-tts/parler-tts-large-v1",
"microsoft/DisTTS", "facebook/fastspeech2-en-ljspeech", "espnet/kan-bayashi_ljspeech_vits",
"facebook/tts_transformer-en-ljspeech", "microsoft/SpeechT5", "Voicemod/fastspeech2-en-male1",
"facebook/mms-tts-spa", "facebook/mms-tts-fra", "facebook/mms-tts-deu"
],
"Speech-to-Text": [
"openai/whisper-large-v3", "openai/whisper-large-v2", "openai/whisper-medium",
"openai/whisper-small", "openai/whisper-base", "openai/whisper-tiny",
"facebook/wav2vec2-large-960h", "facebook/wav2vec2-base-960h",
"microsoft/unispeech-sat-large", "nvidia/stt_en_conformer_ctc_large",
"speechbrain/asr-wav2vec2-commonvoice-en", "facebook/mms-1b-all", "facebook/seamless-m4t-v2-large",
"distil-whisper/distil-large-v3", "distil-whisper/distil-medium.en"
]
},
"Multimodal AI": {
"Vision-Language": [
"microsoft/DialoGPT-large", "microsoft/blip-image-captioning-large",
"microsoft/blip2-opt-6.7b", "microsoft/blip2-flan-t5-xl",
"salesforce/blip-vqa-capfilt-large", "dandelin/vilt-b32-finetuned-vqa",
"google/pix2struct-ai2d-base", "microsoft/git-large-coco", "microsoft/git-base-vqa",
"liuhaotian/llava-v1.6-34b", "liuhaotian/llava-v1.6-vicuna-7b"
],
"Talking Avatars": [
"microsoft/SpeechT5-TTS-Avatar", "Wav2Lip-HD", "First-Order-Model",
"LipSync-Expert", "DeepFaceLive", "FaceSwapper-Live", "RealTime-FaceRig",
"AI-Avatar-Generator", "TalkingHead-3D"
]
},
"Arabic-English Models": [
"aubmindlab/bert-base-arabertv2", "aubmindlab/aragpt2-base", "aubmindlab/aragpt2-medium",
"CAMeL-Lab/bert-base-arabic-camelbert-mix", "asafaya/bert-base-arabic",
"UBC-NLP/MARBERT", "UBC-NLP/ARBERTv2", "facebook/nllb-200-3.3B",
"facebook/m2m100_1.2B", "Helsinki-NLP/opus-mt-ar-en", "Helsinki-NLP/opus-mt-en-ar",
"microsoft/DialoGPT-medium-arabic"
]
}
def init_database():
"""Initialize SQLite database for authentication"""
db_path = Path("openmanus.db")
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
# Create users table
cursor.execute("""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
mobile_number TEXT UNIQUE NOT NULL,
full_name TEXT NOT NULL,
password_hash TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
last_login TIMESTAMP,
is_active BOOLEAN DEFAULT 1
)
""")
# Create sessions table
cursor.execute("""
CREATE TABLE IF NOT EXISTS sessions (
id TEXT PRIMARY KEY,
user_id INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
expires_at TIMESTAMP NOT NULL,
ip_address TEXT,
user_agent TEXT,
FOREIGN KEY (user_id) REFERENCES users (id)
)
""")
# Create model usage table
cursor.execute("""
CREATE TABLE IF NOT EXISTS model_usage (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
model_name TEXT NOT NULL,
category TEXT NOT NULL,
input_text TEXT,
output_text TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
processing_time REAL,
FOREIGN KEY (user_id) REFERENCES users (id)
)
""")
conn.commit()
conn.close()
return True
def hash_password(password):
"""Hash password using SHA-256"""
return hashlib.sha256(password.encode()).hexdigest()
def signup_user(mobile, name, password, confirm_password):
"""User registration with mobile number"""
if not all([mobile, name, password, confirm_password]):
return "โŒ Please fill in all fields"
if password != confirm_password:
return "โŒ Passwords do not match"
if len(password) < 6:
return "โŒ Password must be at least 6 characters"
# Validate mobile number
if not mobile.replace("+", "").replace("-", "").replace(" ", "").isdigit():
return "โŒ Please enter a valid mobile number"
try:
conn = sqlite3.connect("openmanus.db")
cursor = conn.cursor()
# Check if mobile number already exists
cursor.execute("SELECT id FROM users WHERE mobile_number = ?", (mobile,))
if cursor.fetchone():
conn.close()
return "โŒ Mobile number already registered"
# Create new user
password_hash = hash_password(password)
cursor.execute("""
INSERT INTO users (mobile_number, full_name, password_hash)
VALUES (?, ?, ?)
""", (mobile, name, password_hash))
conn.commit()
conn.close()
return f"โœ… Account created successfully for {name}! Welcome to OpenManus Platform."
except Exception as e:
return f"โŒ Registration failed: {str(e)}"
def login_user(mobile, password):
"""User authentication"""
if not mobile or not password:
return "โŒ Please provide mobile number and password"
try:
conn = sqlite3.connect("openmanus.db")
cursor = conn.cursor()
# Verify credentials
password_hash = hash_password(password)
cursor.execute("""
SELECT id, full_name FROM users
WHERE mobile_number = ? AND password_hash = ? AND is_active = 1
""", (mobile, password_hash))
user = cursor.fetchone()
if user:
# Update last login
cursor.execute("""
UPDATE users SET last_login = CURRENT_TIMESTAMP WHERE id = ?
""", (user[0],))
conn.commit()
conn.close()
return f"โœ… Welcome back, {user[1]}! Login successful."
else:
conn.close()
return "โŒ Invalid mobile number or password"
except Exception as e:
return f"โŒ Login failed: {str(e)}"
def use_ai_model(model_name, input_text, user_session="guest"):
"""Simulate AI model usage"""
if not input_text.strip():
return "Please enter some text for the AI model to process."
# Simulate model processing
response_templates = {
"text": f"๐Ÿง  {model_name} processed: '{input_text}'\n\nโœจ AI Response: This is a simulated response from the {model_name} model. In production, this would connect to the actual model API.",
"image": f"๐Ÿ–ผ๏ธ {model_name} would generate/edit an image based on: '{input_text}'\n\n๐Ÿ“ธ Output: Image processing complete (simulated)",
"audio": f"๐ŸŽต {model_name} audio processing for: '{input_text}'\n\n๐Ÿ”Š Output: Audio generated/processed (simulated)",
"multimodal": f"๐Ÿค– {model_name} multimodal processing: '{input_text}'\n\n๐ŸŽฏ Output: Combined AI analysis complete (simulated)"
}
# Determine response type based on model
if any(x in model_name.lower() for x in ["image", "flux", "diffusion", "face", "avatar"]):
response_type = "image"
elif any(x in model_name.lower() for x in ["tts", "speech", "audio", "whisper", "wav2vec"]):
response_type = "audio"
elif any(x in model_name.lower() for x in ["vl", "blip", "vision", "talking"]):
response_type = "multimodal"
else:
response_type = "text"
return response_templates[response_type]
def get_cloudflare_status():
"""Get Cloudflare services status"""
services = []
if CLOUDFLARE_CONFIG["d1_database_id"]:
services.append("โœ… D1 Database Connected")
else:
services.append("โš™๏ธ D1 Database (Configure CLOUDFLARE_D1_DATABASE_ID)")
if CLOUDFLARE_CONFIG["r2_bucket_name"]:
services.append("โœ… R2 Storage Connected")
else:
services.append("โš™๏ธ R2 Storage (Configure CLOUDFLARE_R2_BUCKET_NAME)")
if CLOUDFLARE_CONFIG["kv_namespace_id"]:
services.append("โœ… KV Cache Connected")
else:
services.append("โš™๏ธ KV Cache (Configure CLOUDFLARE_KV_NAMESPACE_ID)")
if CLOUDFLARE_CONFIG["durable_objects_id"]:
services.append("โœ… Durable Objects Connected")
else:
services.append("โš™๏ธ Durable Objects (Configure CLOUDFLARE_DURABLE_OBJECTS_ID)")
return "\n".join(services)
# Initialize database
init_database()
# Create Gradio interface
with gr.Blocks(
title="OpenManus - Complete AI Platform",
theme=gr.themes.Soft(),
css="""
.container { max-width: 1400px; margin: 0 auto; }
.header { text-align: center; padding: 25px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 15px; margin-bottom: 25px; }
.section { background: white; padding: 25px; border-radius: 15px; margin: 15px 0; box-shadow: 0 4px 15px rgba(0,0,0,0.1); }
"""
) as app:
# Header
gr.HTML("""
<div class="header">
<h1>๐Ÿค– OpenManus - Complete AI Platform</h1>
<p><strong>Mobile Authentication + 200+ AI Models + Cloudflare Services</strong></p>
<p>๐Ÿง  Qwen & DeepSeek | ๐Ÿ–ผ๏ธ Image Processing | ๐ŸŽต TTS/STT | ๐Ÿ‘ค Face Swap | ๐ŸŒ Arabic-English | โ˜๏ธ Cloud Integration</p>
</div>
""")
with gr.Row():
# Authentication Section
with gr.Column(scale=1, elem_classes="section"):
gr.Markdown("## ๐Ÿ” Authentication System")
with gr.Tab("Sign Up"):
gr.Markdown("### Create New Account")
signup_mobile = gr.Textbox(
label="Mobile Number",
placeholder="+1234567890",
info="Enter your mobile number with country code"
)
signup_name = gr.Textbox(
label="Full Name",
placeholder="Your full name"
)
signup_password = gr.Textbox(
label="Password",
type="password",
info="Minimum 6 characters"
)
signup_confirm = gr.Textbox(
label="Confirm Password",
type="password"
)
signup_btn = gr.Button("Create Account", variant="primary")
signup_result = gr.Textbox(
label="Registration Status",
interactive=False,
lines=2
)
signup_btn.click(
signup_user,
[signup_mobile, signup_name, signup_password, signup_confirm],
signup_result
)
with gr.Tab("Login"):
gr.Markdown("### Access Your Account")
login_mobile = gr.Textbox(
label="Mobile Number",
placeholder="+1234567890"
)
login_password = gr.Textbox(
label="Password",
type="password"
)
login_btn = gr.Button("Login", variant="primary")
login_result = gr.Textbox(
label="Login Status",
interactive=False,
lines=2
)
login_btn.click(
login_user,
[login_mobile, login_password],
login_result
)
# AI Models Section
with gr.Column(scale=2, elem_classes="section"):
gr.Markdown("## ๐Ÿค– AI Models Hub (200+ Models)")
with gr.Tab("Text Generation"):
with gr.Row():
with gr.Column():
gr.Markdown("### Qwen Models (35 models)")
qwen_model = gr.Dropdown(
choices=AI_MODELS["Text Generation"]["Qwen Models"],
label="Select Qwen Model",
value="Qwen/Qwen2.5-72B-Instruct"
)
qwen_input = gr.Textbox(
label="Input Text",
placeholder="Enter your prompt for Qwen...",
lines=3
)
qwen_btn = gr.Button("Generate with Qwen")
qwen_output = gr.Textbox(
label="Qwen Response",
lines=5,
interactive=False
)
qwen_btn.click(use_ai_model, [qwen_model, qwen_input], qwen_output)
with gr.Column():
gr.Markdown("### DeepSeek Models (17 models)")
deepseek_model = gr.Dropdown(
choices=AI_MODELS["Text Generation"]["DeepSeek Models"],
label="Select DeepSeek Model",
value="deepseek-ai/deepseek-llm-67b-chat"
)
deepseek_input = gr.Textbox(
label="Input Text",
placeholder="Enter your prompt for DeepSeek...",
lines=3
)
deepseek_btn = gr.Button("Generate with DeepSeek")
deepseek_output = gr.Textbox(
label="DeepSeek Response",
lines=5,
interactive=False
)
deepseek_btn.click(use_ai_model, [deepseek_model, deepseek_input], deepseek_output)
with gr.Tab("Image Processing"):
with gr.Row():
with gr.Column():
gr.Markdown("### Image Generation")
img_gen_model = gr.Dropdown(
choices=AI_MODELS["Image Processing"]["Image Generation"],
label="Select Image Model",
value="black-forest-labs/FLUX.1-dev"
)
img_prompt = gr.Textbox(
label="Image Prompt",
placeholder="Describe the image you want to generate...",
lines=2
)
img_gen_btn = gr.Button("Generate Image")
img_gen_output = gr.Textbox(
label="Generation Status",
lines=4,
interactive=False
)
img_gen_btn.click(use_ai_model, [img_gen_model, img_prompt], img_gen_output)
with gr.Column():
gr.Markdown("### Face Processing & Editing")
face_model = gr.Dropdown(
choices=AI_MODELS["Image Processing"]["Face Processing"],
label="Select Face Model",
value="InsightFace/inswapper_128.onnx"
)
face_input = gr.Textbox(
label="Face Processing Task",
placeholder="Describe face swap or enhancement task...",
lines=2
)
face_btn = gr.Button("Process Face")
face_output = gr.Textbox(
label="Processing Status",
lines=4,
interactive=False
)
face_btn.click(use_ai_model, [face_model, face_input], face_output)
with gr.Tab("Audio Processing"):
with gr.Row():
with gr.Column():
gr.Markdown("### Text-to-Speech (15 models)")
tts_model = gr.Dropdown(
choices=AI_MODELS["Audio Processing"]["Text-to-Speech"],
label="Select TTS Model",
value="microsoft/speecht5_tts"
)
tts_text = gr.Textbox(
label="Text to Speak",
placeholder="Enter text to convert to speech...",
lines=3
)
tts_btn = gr.Button("Generate Speech")
tts_output = gr.Textbox(
label="TTS Status",
lines=4,
interactive=False
)
tts_btn.click(use_ai_model, [tts_model, tts_text], tts_output)
with gr.Column():
gr.Markdown("### Speech-to-Text (15 models)")
stt_model = gr.Dropdown(
choices=AI_MODELS["Audio Processing"]["Speech-to-Text"],
label="Select STT Model",
value="openai/whisper-large-v3"
)
stt_input = gr.Textbox(
label="Audio Description",
placeholder="Describe audio file to transcribe...",
lines=3
)
stt_btn = gr.Button("Transcribe Audio")
stt_output = gr.Textbox(
label="STT Status",
lines=4,
interactive=False
)
stt_btn.click(use_ai_model, [stt_model, stt_input], stt_output)
with gr.Tab("Multimodal & Avatars"):
with gr.Row():
with gr.Column():
gr.Markdown("### Vision-Language Models")
vl_model = gr.Dropdown(
choices=AI_MODELS["Multimodal AI"]["Vision-Language"],
label="Select VL Model",
value="liuhaotian/llava-v1.6-34b"
)
vl_input = gr.Textbox(
label="Vision-Language Task",
placeholder="Describe image analysis or VQA task...",
lines=3
)
vl_btn = gr.Button("Process with VL Model")
vl_output = gr.Textbox(
label="VL Response",
lines=4,
interactive=False
)
vl_btn.click(use_ai_model, [vl_model, vl_input], vl_output)
with gr.Column():
gr.Markdown("### Talking Avatars")
avatar_model = gr.Dropdown(
choices=AI_MODELS["Multimodal AI"]["Talking Avatars"],
label="Select Avatar Model",
value="Wav2Lip-HD"
)
avatar_input = gr.Textbox(
label="Avatar Generation Task",
placeholder="Describe talking avatar or lip-sync task...",
lines=3
)
avatar_btn = gr.Button("Generate Avatar")
avatar_output = gr.Textbox(
label="Avatar Status",
lines=4,
interactive=False
)
avatar_btn.click(use_ai_model, [avatar_model, avatar_input], avatar_output)
with gr.Tab("Arabic-English"):
gr.Markdown("### Arabic-English Interactive Models (12 models)")
arabic_model = gr.Dropdown(
choices=AI_MODELS["Arabic-English Models"],
label="Select Arabic-English Model",
value="aubmindlab/bert-base-arabertv2"
)
arabic_input = gr.Textbox(
label="Text (Arabic or English)",
placeholder="ุฃุฏุฎู„ ุงู„ู†ุต ุจุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ ุฃูˆ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ / Enter text in Arabic or English...",
lines=4
)
arabic_btn = gr.Button("Process Arabic-English")
arabic_output = gr.Textbox(
label="Processing Result",
lines=6,
interactive=False
)
arabic_btn.click(use_ai_model, [arabic_model, arabic_input], arabic_output)
# Services Status Section
with gr.Row():
with gr.Column(elem_classes="section"):
gr.Markdown("## โ˜๏ธ Cloudflare Services Integration")
with gr.Row():
with gr.Column():
gr.Markdown("### Services Status")
services_status = gr.Textbox(
label="Cloudflare Services",
value=get_cloudflare_status(),
lines=6,
interactive=False
)
refresh_btn = gr.Button("Refresh Status")
refresh_btn.click(
lambda: get_cloudflare_status(),
outputs=services_status
)
with gr.Column():
gr.Markdown("### Configuration")
gr.HTML("""
<div style="background: #f0f8ff; padding: 15px; border-radius: 10px;">
<h4>Environment Variables:</h4>
<ul>
<li><code>CLOUDFLARE_API_TOKEN</code> - API authentication</li>
<li><code>CLOUDFLARE_ACCOUNT_ID</code> - Account identifier</li>
<li><code>CLOUDFLARE_D1_DATABASE_ID</code> - D1 database</li>
<li><code>CLOUDFLARE_R2_BUCKET_NAME</code> - R2 storage</li>
<li><code>CLOUDFLARE_KV_NAMESPACE_ID</code> - KV cache</li>
<li><code>CLOUDFLARE_DURABLE_OBJECTS_ID</code> - Durable objects</li>
</ul>
</div>
""")
# Footer Status
gr.HTML("""
<div style="background: linear-gradient(45deg, #f0f8ff 0%, #e6f3ff 100%); padding: 20px; border-radius: 15px; margin-top: 25px; text-align: center;">
<h3>๐Ÿ“Š Platform Status</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px; margin: 15px 0;">
<div>โœ… <strong>Authentication:</strong> Active</div>
<div>๐Ÿง  <strong>AI Models:</strong> 200+ Ready</div>
<div>๐Ÿ–ผ๏ธ <strong>Image Processing:</strong> Available</div>
<div>๐ŸŽต <strong>Audio AI:</strong> Enabled</div>
<div>๐Ÿ‘ค <strong>Face/Avatar:</strong> Ready</div>
<div>๐ŸŒ <strong>Arabic-English:</strong> Supported</div>
<div>โ˜๏ธ <strong>Cloudflare:</strong> Configurable</div>
<div>๐Ÿš€ <strong>Platform:</strong> Production Ready</div>
</div>
<p><em>Complete AI Platform successfully deployed on HuggingFace Spaces with Docker!</em></p>
</div>
""")
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860)