Update app.py
Browse files
app.py
CHANGED
|
@@ -1,259 +1,185 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
-
from langchain_community.llms import HuggingFacePipeline
|
| 6 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 7 |
-
from langchain.memory import ConversationBufferMemory
|
| 8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 9 |
from pypdf import PdfReader
|
| 10 |
import torch
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
def
|
| 18 |
-
"""Initialize
|
| 19 |
-
global
|
| 20 |
|
| 21 |
-
|
| 22 |
-
return
|
| 23 |
|
| 24 |
-
|
|
|
|
| 25 |
|
| 26 |
-
#
|
| 27 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 28 |
-
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 30 |
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
model_name,
|
| 32 |
-
torch_dtype=torch.
|
| 33 |
-
device_map="auto",
|
| 34 |
low_cpu_mem_usage=True
|
| 35 |
)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
"text-generation",
|
| 39 |
-
model=model,
|
| 40 |
-
tokenizer=tokenizer,
|
| 41 |
-
max_new_tokens=512,
|
| 42 |
-
temperature=0.7,
|
| 43 |
-
top_p=0.95,
|
| 44 |
-
repetition_penalty=1.15
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
llm_pipeline = HuggingFacePipeline(pipeline=pipe)
|
| 48 |
-
print("Model loaded successfully!")
|
| 49 |
|
| 50 |
def process_pdf(pdf_file):
|
| 51 |
-
"""Process
|
| 52 |
-
global
|
| 53 |
|
| 54 |
if pdf_file is None:
|
| 55 |
-
return "Please upload a PDF file!", None
|
| 56 |
|
| 57 |
try:
|
| 58 |
-
#
|
| 59 |
pdf_reader = PdfReader(pdf_file.name)
|
| 60 |
text = ""
|
| 61 |
for page in pdf_reader.pages:
|
| 62 |
-
text += page.extract_text()
|
| 63 |
|
| 64 |
if not text.strip():
|
| 65 |
-
return "Could not extract text from PDF
|
| 66 |
-
|
| 67 |
-
# Split text into chunks
|
| 68 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 69 |
-
chunk_size=1000,
|
| 70 |
-
chunk_overlap=200,
|
| 71 |
-
length_function=len
|
| 72 |
-
)
|
| 73 |
-
chunks = text_splitter.split_text(text)
|
| 74 |
-
|
| 75 |
-
# Create embeddings (using a lightweight model)
|
| 76 |
-
embeddings = HuggingFaceEmbeddings(
|
| 77 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 78 |
-
model_kwargs={'device': 'cpu'}
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
# Create vector store
|
| 82 |
-
vectorstore = FAISS.from_texts(chunks, embeddings)
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
output_key="answer"
|
| 92 |
-
)
|
| 93 |
|
| 94 |
-
# Create
|
| 95 |
-
|
| 96 |
-
llm=llm_pipeline,
|
| 97 |
-
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),
|
| 98 |
-
memory=memory,
|
| 99 |
-
return_source_documents=True,
|
| 100 |
-
verbose=False
|
| 101 |
-
)
|
| 102 |
|
| 103 |
-
return f"β
PDF processed
|
| 104 |
|
| 105 |
except Exception as e:
|
| 106 |
-
return f"β Error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
def chat(message, history):
|
| 109 |
-
"""Handle chat
|
| 110 |
-
global
|
| 111 |
|
| 112 |
-
if
|
| 113 |
return history + [[message, "β οΈ Please upload and process a PDF first!"]]
|
| 114 |
|
| 115 |
if not message.strip():
|
| 116 |
return history
|
| 117 |
|
| 118 |
try:
|
| 119 |
-
#
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
answer = answer.split("Answer:")[-1].strip()
|
| 126 |
|
| 127 |
-
return history + [[message,
|
| 128 |
|
| 129 |
except Exception as e:
|
| 130 |
return history + [[message, f"β Error: {str(e)}"]]
|
| 131 |
|
| 132 |
-
def
|
| 133 |
-
"""Clear
|
| 134 |
-
global
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
return None
|
| 138 |
|
| 139 |
-
# Create
|
| 140 |
-
with gr.Blocks(
|
| 141 |
-
gr.Markdown(
|
| 142 |
-
"""
|
| 143 |
-
# π Chat with PDF using AI
|
| 144 |
-
Upload a PDF document and ask questions about its content - No API key required!
|
| 145 |
-
|
| 146 |
-
**Instructions:**
|
| 147 |
-
1. Upload a PDF file
|
| 148 |
-
2. Click "Process PDF" and wait for confirmation
|
| 149 |
-
3. Start asking questions about your document!
|
| 150 |
-
"""
|
| 151 |
-
)
|
| 152 |
|
| 153 |
with gr.Row():
|
| 154 |
with gr.Column(scale=1):
|
| 155 |
-
pdf_input = gr.File(
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
)
|
| 160 |
-
process_btn = gr.Button("π Process PDF", variant="primary", size="lg")
|
| 161 |
-
status_output = gr.Textbox(
|
| 162 |
-
label="π Status",
|
| 163 |
-
interactive=False,
|
| 164 |
-
lines=3
|
| 165 |
-
)
|
| 166 |
|
| 167 |
-
gr.Markdown(
|
| 168 |
-
"""
|
| 169 |
-
### π‘ Tips:
|
| 170 |
-
- Processing may take 30-60 seconds
|
| 171 |
-
- Ask specific questions about the content
|
| 172 |
-
- You can ask follow-up questions
|
| 173 |
-
- Best with text-based PDFs (not scanned images)
|
| 174 |
-
"""
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
with gr.Column(scale=2):
|
| 178 |
-
chatbot = gr.Chatbot(
|
| 179 |
-
|
| 180 |
-
height=500,
|
| 181 |
-
bubble_full_width=False
|
| 182 |
-
)
|
| 183 |
with gr.Row():
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
placeholder="Ask a question about your PDF...",
|
| 187 |
-
lines=2,
|
| 188 |
-
scale=4
|
| 189 |
-
)
|
| 190 |
-
with gr.Row():
|
| 191 |
-
submit_btn = gr.Button("π€ Send", variant="primary", scale=1)
|
| 192 |
-
clear_btn = gr.Button("ποΈ Clear Chat", scale=1)
|
| 193 |
-
|
| 194 |
-
gr.Markdown(
|
| 195 |
-
"""
|
| 196 |
-
---
|
| 197 |
-
### π API Access
|
| 198 |
-
Once deployed on Hugging Face Spaces, you can access this via API:
|
| 199 |
-
```python
|
| 200 |
-
# Python example
|
| 201 |
-
from gradio_client import Client
|
| 202 |
-
|
| 203 |
-
client = Client("YOUR_USERNAME/YOUR_SPACE_NAME")
|
| 204 |
-
|
| 205 |
-
# Process PDF
|
| 206 |
-
result = client.predict("path/to/file.pdf", api_name="/process_pdf")
|
| 207 |
-
|
| 208 |
-
# Ask questions
|
| 209 |
-
result = client.predict("What is this document about?", [], api_name="/chat")
|
| 210 |
-
```
|
| 211 |
-
|
| 212 |
-
```javascript
|
| 213 |
-
// JavaScript example
|
| 214 |
-
const response = await fetch("https://YOUR_USERNAME-YOUR_SPACE_NAME.hf.space/api/predict", {
|
| 215 |
-
method: "POST",
|
| 216 |
-
headers: { "Content-Type": "application/json" },
|
| 217 |
-
body: JSON.stringify({
|
| 218 |
-
data: ["What is this document about?", []]
|
| 219 |
-
})
|
| 220 |
-
});
|
| 221 |
-
```
|
| 222 |
-
"""
|
| 223 |
-
)
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
process_btn.click(
|
| 227 |
-
fn=process_pdf,
|
| 228 |
-
inputs=[pdf_input],
|
| 229 |
-
outputs=[status_output, chatbot, msg]
|
| 230 |
-
)
|
| 231 |
|
| 232 |
-
msg.submit(
|
| 233 |
-
|
| 234 |
-
inputs=[msg, chatbot],
|
| 235 |
-
outputs=[chatbot]
|
| 236 |
-
).then(
|
| 237 |
-
fn=lambda: "",
|
| 238 |
-
outputs=[msg]
|
| 239 |
-
)
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
inputs=[msg, chatbot],
|
| 244 |
-
outputs=[chatbot]
|
| 245 |
-
).then(
|
| 246 |
-
fn=lambda: "",
|
| 247 |
-
outputs=[msg]
|
| 248 |
-
)
|
| 249 |
-
|
| 250 |
-
clear_btn.click(
|
| 251 |
-
fn=clear_chat,
|
| 252 |
-
outputs=[chatbot]
|
| 253 |
-
)
|
| 254 |
|
| 255 |
-
# Initialize
|
| 256 |
-
|
| 257 |
|
| 258 |
if __name__ == "__main__":
|
| 259 |
-
demo.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from pypdf import PdfReader
|
| 5 |
import torch
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 7 |
|
| 8 |
+
# Global variables
|
| 9 |
+
chunks = []
|
| 10 |
+
embeddings = []
|
| 11 |
+
model = None
|
| 12 |
+
tokenizer = None
|
| 13 |
+
embed_model = None
|
| 14 |
|
| 15 |
+
def initialize_models():
|
| 16 |
+
"""Initialize models on startup"""
|
| 17 |
+
global model, tokenizer, embed_model
|
| 18 |
|
| 19 |
+
print("Loading models...")
|
|
|
|
| 20 |
|
| 21 |
+
# Load embedding model
|
| 22 |
+
embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 23 |
|
| 24 |
+
# Load language model
|
| 25 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
|
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
model_name,
|
| 29 |
+
torch_dtype=torch.float32,
|
|
|
|
| 30 |
low_cpu_mem_usage=True
|
| 31 |
)
|
| 32 |
|
| 33 |
+
print("Models loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def process_pdf(pdf_file):
|
| 36 |
+
"""Process PDF and create embeddings"""
|
| 37 |
+
global chunks, embeddings, embed_model
|
| 38 |
|
| 39 |
if pdf_file is None:
|
| 40 |
+
return "β Please upload a PDF file!", None
|
| 41 |
|
| 42 |
try:
|
| 43 |
+
# Read PDF
|
| 44 |
pdf_reader = PdfReader(pdf_file.name)
|
| 45 |
text = ""
|
| 46 |
for page in pdf_reader.pages:
|
| 47 |
+
text += page.extract_text() + "\n"
|
| 48 |
|
| 49 |
if not text.strip():
|
| 50 |
+
return "β Could not extract text from PDF!", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Split into chunks
|
| 53 |
+
chunk_size = 1000
|
| 54 |
+
overlap = 200
|
| 55 |
+
chunks = []
|
| 56 |
|
| 57 |
+
for i in range(0, len(text), chunk_size - overlap):
|
| 58 |
+
chunk = text[i:i + chunk_size]
|
| 59 |
+
if chunk.strip():
|
| 60 |
+
chunks.append(chunk)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# Create embeddings
|
| 63 |
+
embeddings = embed_model.encode(chunks, show_progress_bar=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
return f"β
PDF processed! Created {len(chunks)} chunks. You can now ask questions!", None
|
| 66 |
|
| 67 |
except Exception as e:
|
| 68 |
+
return f"β Error: {str(e)}", None
|
| 69 |
+
|
| 70 |
+
def find_relevant_chunks(query, top_k=3):
|
| 71 |
+
"""Find most relevant chunks using cosine similarity"""
|
| 72 |
+
global chunks, embeddings, embed_model
|
| 73 |
+
|
| 74 |
+
if not chunks:
|
| 75 |
+
return []
|
| 76 |
+
|
| 77 |
+
query_embedding = embed_model.encode([query])[0]
|
| 78 |
+
|
| 79 |
+
# Calculate cosine similarity
|
| 80 |
+
similarities = np.dot(embeddings, query_embedding) / (
|
| 81 |
+
np.linalg.norm(embeddings, axis=1) * np.linalg.norm(query_embedding)
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# Get top k indices
|
| 85 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 86 |
+
|
| 87 |
+
return [chunks[i] for i in top_indices]
|
| 88 |
+
|
| 89 |
+
def generate_response(question, context):
|
| 90 |
+
"""Generate response using the language model"""
|
| 91 |
+
global model, tokenizer
|
| 92 |
+
|
| 93 |
+
prompt = f"""<|system|>
|
| 94 |
+
You are a helpful assistant. Answer the question based on the provided context. Be concise and accurate.
|
| 95 |
+
</s>
|
| 96 |
+
<|user|>
|
| 97 |
+
Context: {context}
|
| 98 |
+
|
| 99 |
+
Question: {question}
|
| 100 |
+
</s>
|
| 101 |
+
<|assistant|>
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
outputs = model.generate(
|
| 108 |
+
**inputs,
|
| 109 |
+
max_new_tokens=300,
|
| 110 |
+
temperature=0.7,
|
| 111 |
+
top_p=0.9,
|
| 112 |
+
do_sample=True,
|
| 113 |
+
pad_token_id=tokenizer.eos_token_id
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 117 |
+
|
| 118 |
+
# Extract only the assistant's response
|
| 119 |
+
if "<|assistant|>" in response:
|
| 120 |
+
response = response.split("<|assistant|>")[-1].strip()
|
| 121 |
+
|
| 122 |
+
return response
|
| 123 |
|
| 124 |
def chat(message, history):
|
| 125 |
+
"""Handle chat"""
|
| 126 |
+
global chunks
|
| 127 |
|
| 128 |
+
if not chunks:
|
| 129 |
return history + [[message, "β οΈ Please upload and process a PDF first!"]]
|
| 130 |
|
| 131 |
if not message.strip():
|
| 132 |
return history
|
| 133 |
|
| 134 |
try:
|
| 135 |
+
# Find relevant context
|
| 136 |
+
relevant_chunks = find_relevant_chunks(message)
|
| 137 |
+
context = "\n\n".join(relevant_chunks)
|
| 138 |
|
| 139 |
+
# Generate response
|
| 140 |
+
response = generate_response(message, context)
|
|
|
|
| 141 |
|
| 142 |
+
return history + [[message, response]]
|
| 143 |
|
| 144 |
except Exception as e:
|
| 145 |
return history + [[message, f"β Error: {str(e)}"]]
|
| 146 |
|
| 147 |
+
def clear_all():
|
| 148 |
+
"""Clear everything"""
|
| 149 |
+
global chunks, embeddings
|
| 150 |
+
chunks = []
|
| 151 |
+
embeddings = []
|
| 152 |
+
return None, "Ready to process a new PDF"
|
| 153 |
|
| 154 |
+
# Create UI
|
| 155 |
+
with gr.Blocks(title="Chat with PDF") as demo:
|
| 156 |
+
gr.Markdown("# π Chat with PDF - Simple Version")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
with gr.Row():
|
| 159 |
with gr.Column(scale=1):
|
| 160 |
+
pdf_input = gr.File(label="π Upload PDF", file_types=[".pdf"])
|
| 161 |
+
process_btn = gr.Button("π Process PDF", variant="primary")
|
| 162 |
+
status = gr.Textbox(label="Status", lines=3)
|
| 163 |
+
clear_all_btn = gr.Button("ποΈ Clear All")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Column(scale=2):
|
| 166 |
+
chatbot = gr.Chatbot(label="π¬ Chat", height=400)
|
| 167 |
+
msg = gr.Textbox(label="Question", placeholder="Ask about the PDF...")
|
|
|
|
|
|
|
|
|
|
| 168 |
with gr.Row():
|
| 169 |
+
send_btn = gr.Button("Send", variant="primary")
|
| 170 |
+
clear_btn = gr.Button("Clear Chat")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
# Events
|
| 173 |
+
process_btn.click(process_pdf, [pdf_input], [status, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
msg.submit(chat, [msg, chatbot], [chatbot]).then(lambda: "", None, [msg])
|
| 176 |
+
send_btn.click(chat, [msg, chatbot], [chatbot]).then(lambda: "", None, [msg])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
clear_btn.click(lambda: None, None, [chatbot])
|
| 179 |
+
clear_all_btn.click(clear_all, None, [chatbot, status])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
# Initialize on startup
|
| 182 |
+
initialize_models()
|
| 183 |
|
| 184 |
if __name__ == "__main__":
|
| 185 |
+
demo.launch()
|