Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,20 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import fitz # PyMuPDF
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
from transformers import pipeline
|
| 7 |
-
from io import BytesIO
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 11 |
qa_model = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 12 |
|
|
@@ -14,27 +22,35 @@ chunks = []
|
|
| 14 |
vectors = None
|
| 15 |
|
| 16 |
def extract_text_from_pdf(pdf_file):
|
| 17 |
-
"""
|
| 18 |
-
# Handle
|
| 19 |
if hasattr(pdf_file, "read"):
|
| 20 |
file_bytes = pdf_file.read()
|
| 21 |
else:
|
| 22 |
file_bytes = BytesIO(pdf_file.encode("utf-8")).read()
|
|
|
|
| 23 |
text = ""
|
| 24 |
with fitz.open(stream=file_bytes, filetype="pdf") as doc:
|
| 25 |
for page in doc:
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
return text.strip()
|
| 28 |
|
| 29 |
def create_embeddings(text):
|
| 30 |
-
"""Split text and create embeddings."""
|
| 31 |
global chunks, vectors
|
| 32 |
chunk_size = 800
|
| 33 |
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
| 34 |
vectors = embedding_model.encode(chunks)
|
| 35 |
|
| 36 |
def chat_with_pdf(query):
|
| 37 |
-
"""Answer questions using semantic similarity."""
|
| 38 |
if not chunks:
|
| 39 |
return "β Please upload a PDF first."
|
| 40 |
q_vec = embedding_model.encode([query])
|
|
@@ -49,15 +65,15 @@ def handle_pdf_upload(pdf_file):
|
|
| 49 |
try:
|
| 50 |
text = extract_text_from_pdf(pdf_file)
|
| 51 |
if not text:
|
| 52 |
-
return "β No readable text found
|
| 53 |
create_embeddings(text)
|
| 54 |
return "β
PDF processed successfully. You can now chat!"
|
| 55 |
except Exception as e:
|
| 56 |
return f"β Error: {str(e)}"
|
| 57 |
|
| 58 |
-
#
|
| 59 |
with gr.Blocks() as app:
|
| 60 |
-
gr.Markdown("## π€ Chat with Your PDF β
|
| 61 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 62 |
status_box = gr.Textbox(label="Status", interactive=False)
|
| 63 |
pdf_input.change(fn=handle_pdf_upload, inputs=pdf_input, outputs=status_box)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import fitz # PyMuPDF
|
| 3 |
import numpy as np
|
| 4 |
+
from io import BytesIO
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
from transformers import pipeline
|
|
|
|
| 8 |
|
| 9 |
+
# Optional OCR
|
| 10 |
+
try:
|
| 11 |
+
import pytesseract
|
| 12 |
+
from PIL import Image
|
| 13 |
+
OCR_AVAILABLE = True
|
| 14 |
+
except ImportError:
|
| 15 |
+
OCR_AVAILABLE = False
|
| 16 |
+
|
| 17 |
+
# Models
|
| 18 |
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 19 |
qa_model = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 20 |
|
|
|
|
| 22 |
vectors = None
|
| 23 |
|
| 24 |
def extract_text_from_pdf(pdf_file):
|
| 25 |
+
"""Extract text; fallback to OCR if no text found."""
|
| 26 |
+
# Handle NamedString or file object
|
| 27 |
if hasattr(pdf_file, "read"):
|
| 28 |
file_bytes = pdf_file.read()
|
| 29 |
else:
|
| 30 |
file_bytes = BytesIO(pdf_file.encode("utf-8")).read()
|
| 31 |
+
|
| 32 |
text = ""
|
| 33 |
with fitz.open(stream=file_bytes, filetype="pdf") as doc:
|
| 34 |
for page in doc:
|
| 35 |
+
page_text = page.get_text("text")
|
| 36 |
+
text += page_text + "\n"
|
| 37 |
+
|
| 38 |
+
# If no text found, try OCR
|
| 39 |
+
if not text.strip() and OCR_AVAILABLE:
|
| 40 |
+
for page in doc:
|
| 41 |
+
pix = page.get_pixmap()
|
| 42 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 43 |
+
text += pytesseract.image_to_string(img) + "\n"
|
| 44 |
+
|
| 45 |
return text.strip()
|
| 46 |
|
| 47 |
def create_embeddings(text):
|
|
|
|
| 48 |
global chunks, vectors
|
| 49 |
chunk_size = 800
|
| 50 |
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
| 51 |
vectors = embedding_model.encode(chunks)
|
| 52 |
|
| 53 |
def chat_with_pdf(query):
|
|
|
|
| 54 |
if not chunks:
|
| 55 |
return "β Please upload a PDF first."
|
| 56 |
q_vec = embedding_model.encode([query])
|
|
|
|
| 65 |
try:
|
| 66 |
text = extract_text_from_pdf(pdf_file)
|
| 67 |
if not text:
|
| 68 |
+
return "β No readable text found. If this is a scanned PDF, install pytesseract for OCR."
|
| 69 |
create_embeddings(text)
|
| 70 |
return "β
PDF processed successfully. You can now chat!"
|
| 71 |
except Exception as e:
|
| 72 |
return f"β Error: {str(e)}"
|
| 73 |
|
| 74 |
+
# Gradio UI
|
| 75 |
with gr.Blocks() as app:
|
| 76 |
+
gr.Markdown("## π€ Chat with Your PDF β OCR fallback for scanned PDFs")
|
| 77 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 78 |
status_box = gr.Textbox(label="Status", interactive=False)
|
| 79 |
pdf_input.change(fn=handle_pdf_upload, inputs=pdf_input, outputs=status_box)
|