Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,60 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
from langchain_community.vectorstores import FAISS
|
| 4 |
-
from
|
|
|
|
| 5 |
from langchain.chains import ConversationalRetrievalChain
|
| 6 |
-
from
|
|
|
|
| 7 |
from pypdf import PdfReader
|
| 8 |
-
import
|
| 9 |
-
from huggingface_hub import login
|
| 10 |
|
| 11 |
# Initialize global variables
|
| 12 |
vectorstore = None
|
| 13 |
qa_chain = None
|
| 14 |
-
|
| 15 |
|
| 16 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"""Process uploaded PDF and create vector store"""
|
| 18 |
-
global vectorstore, qa_chain
|
| 19 |
|
| 20 |
-
if
|
| 21 |
-
return "Please
|
| 22 |
|
| 23 |
try:
|
| 24 |
-
# Login to Hugging Face
|
| 25 |
-
login(token=hf_token)
|
| 26 |
-
|
| 27 |
# Extract text from PDF
|
| 28 |
pdf_reader = PdfReader(pdf_file.name)
|
| 29 |
text = ""
|
|
@@ -31,7 +62,7 @@ def process_pdf(pdf_file, hf_token):
|
|
| 31 |
text += page.extract_text()
|
| 32 |
|
| 33 |
if not text.strip():
|
| 34 |
-
return "Could not extract text from PDF. Please ensure it's a valid PDF with text content.", None
|
| 35 |
|
| 36 |
# Split text into chunks
|
| 37 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
@@ -41,69 +72,68 @@ def process_pdf(pdf_file, hf_token):
|
|
| 41 |
)
|
| 42 |
chunks = text_splitter.split_text(text)
|
| 43 |
|
| 44 |
-
# Create embeddings
|
| 45 |
embeddings = HuggingFaceEmbeddings(
|
| 46 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
# Create vector store
|
| 50 |
vectorstore = FAISS.from_texts(chunks, embeddings)
|
| 51 |
|
| 52 |
-
# Initialize LLM
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
# Create conversational chain
|
| 61 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 62 |
-
llm=
|
| 63 |
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),
|
|
|
|
| 64 |
return_source_documents=True,
|
| 65 |
verbose=False
|
| 66 |
)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
chat_history = []
|
| 70 |
-
|
| 71 |
-
return f"PDF processed successfully! Extracted {len(chunks)} text chunks. You can now ask questions!", None
|
| 72 |
|
| 73 |
except Exception as e:
|
| 74 |
-
return f"Error processing PDF: {str(e)}", None
|
| 75 |
|
| 76 |
def chat(message, history):
|
| 77 |
"""Handle chat interactions"""
|
| 78 |
-
global qa_chain
|
| 79 |
|
| 80 |
if qa_chain is None:
|
| 81 |
-
return "Please upload and process a PDF first!"
|
| 82 |
|
| 83 |
if not message.strip():
|
| 84 |
-
return
|
| 85 |
|
| 86 |
try:
|
| 87 |
# Get response from chain
|
| 88 |
-
result = qa_chain({
|
| 89 |
-
"question": message,
|
| 90 |
-
"chat_history": chat_history
|
| 91 |
-
})
|
| 92 |
-
|
| 93 |
answer = result["answer"]
|
| 94 |
|
| 95 |
-
#
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
-
return answer
|
| 99 |
|
| 100 |
except Exception as e:
|
| 101 |
-
return f"Error: {str(e)}"
|
| 102 |
|
| 103 |
def clear_chat():
|
| 104 |
-
"""Clear chat history"""
|
| 105 |
-
global
|
| 106 |
-
|
|
|
|
| 107 |
return None
|
| 108 |
|
| 109 |
# Create Gradio interface
|
|
@@ -111,82 +141,110 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Chat with PDF") as demo:
|
|
| 111 |
gr.Markdown(
|
| 112 |
"""
|
| 113 |
# π Chat with PDF using AI
|
| 114 |
-
Upload a PDF document and ask questions about its content!
|
| 115 |
|
| 116 |
**Instructions:**
|
| 117 |
-
1.
|
| 118 |
-
2.
|
| 119 |
-
3.
|
| 120 |
-
4. Start asking questions about your document!
|
| 121 |
"""
|
| 122 |
)
|
| 123 |
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column(scale=1):
|
| 126 |
-
hf_token = gr.Textbox(
|
| 127 |
-
label="Hugging Face API Token",
|
| 128 |
-
type="password",
|
| 129 |
-
placeholder="hf_..."
|
| 130 |
-
)
|
| 131 |
pdf_input = gr.File(
|
| 132 |
-
label="Upload PDF",
|
| 133 |
-
file_types=[".pdf"]
|
|
|
|
| 134 |
)
|
| 135 |
-
process_btn = gr.Button("Process PDF", variant="primary")
|
| 136 |
status_output = gr.Textbox(
|
| 137 |
-
label="Status",
|
| 138 |
-
interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
with gr.Column(scale=2):
|
| 142 |
chatbot = gr.Chatbot(
|
| 143 |
-
label="Chat History",
|
| 144 |
-
height=
|
| 145 |
-
|
| 146 |
-
msg = gr.Textbox(
|
| 147 |
-
label="Your Question",
|
| 148 |
-
placeholder="Ask a question about your PDF...",
|
| 149 |
-
lines=2
|
| 150 |
)
|
| 151 |
with gr.Row():
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
gr.Markdown(
|
| 156 |
"""
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
"""
|
| 163 |
)
|
| 164 |
|
| 165 |
# Event handlers
|
| 166 |
process_btn.click(
|
| 167 |
fn=process_pdf,
|
| 168 |
-
inputs=[pdf_input
|
| 169 |
-
outputs=[status_output, chatbot]
|
| 170 |
)
|
| 171 |
|
| 172 |
-
|
| 173 |
fn=chat,
|
| 174 |
inputs=[msg, chatbot],
|
| 175 |
-
outputs=[
|
| 176 |
).then(
|
| 177 |
-
fn=lambda
|
| 178 |
-
|
| 179 |
-
outputs=[chatbot, msg]
|
| 180 |
)
|
| 181 |
|
| 182 |
-
|
| 183 |
fn=chat,
|
| 184 |
inputs=[msg, chatbot],
|
| 185 |
-
outputs=[
|
| 186 |
).then(
|
| 187 |
-
fn=lambda
|
| 188 |
-
|
| 189 |
-
outputs=[chatbot, msg]
|
| 190 |
)
|
| 191 |
|
| 192 |
clear_btn.click(
|
|
@@ -194,5 +252,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Chat with PDF") as demo:
|
|
| 194 |
outputs=[chatbot]
|
| 195 |
)
|
| 196 |
|
|
|
|
|
|
|
|
|
|
| 197 |
if __name__ == "__main__":
|
| 198 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
from langchain_community.vectorstores import FAISS
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 6 |
from langchain.chains import ConversationalRetrievalChain
|
| 7 |
+
from langchain.memory import ConversationBufferMemory
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 9 |
from pypdf import PdfReader
|
| 10 |
+
import torch
|
|
|
|
| 11 |
|
| 12 |
# Initialize global variables
|
| 13 |
vectorstore = None
|
| 14 |
qa_chain = None
|
| 15 |
+
llm_pipeline = None
|
| 16 |
|
| 17 |
+
def initialize_llm():
|
| 18 |
+
"""Initialize the language model (done once at startup)"""
|
| 19 |
+
global llm_pipeline
|
| 20 |
+
|
| 21 |
+
if llm_pipeline is not None:
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
print("Loading language model...")
|
| 25 |
+
|
| 26 |
+
# Use a smaller, efficient model that works without API
|
| 27 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 28 |
+
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
model_name,
|
| 32 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 33 |
+
device_map="auto",
|
| 34 |
+
low_cpu_mem_usage=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
pipe = pipeline(
|
| 38 |
+
"text-generation",
|
| 39 |
+
model=model,
|
| 40 |
+
tokenizer=tokenizer,
|
| 41 |
+
max_new_tokens=512,
|
| 42 |
+
temperature=0.7,
|
| 43 |
+
top_p=0.95,
|
| 44 |
+
repetition_penalty=1.15
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
llm_pipeline = HuggingFacePipeline(pipeline=pipe)
|
| 48 |
+
print("Model loaded successfully!")
|
| 49 |
+
|
| 50 |
+
def process_pdf(pdf_file):
|
| 51 |
"""Process uploaded PDF and create vector store"""
|
| 52 |
+
global vectorstore, qa_chain
|
| 53 |
|
| 54 |
+
if pdf_file is None:
|
| 55 |
+
return "Please upload a PDF file!", None, None
|
| 56 |
|
| 57 |
try:
|
|
|
|
|
|
|
|
|
|
| 58 |
# Extract text from PDF
|
| 59 |
pdf_reader = PdfReader(pdf_file.name)
|
| 60 |
text = ""
|
|
|
|
| 62 |
text += page.extract_text()
|
| 63 |
|
| 64 |
if not text.strip():
|
| 65 |
+
return "Could not extract text from PDF. Please ensure it's a valid PDF with text content.", None, None
|
| 66 |
|
| 67 |
# Split text into chunks
|
| 68 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
| 72 |
)
|
| 73 |
chunks = text_splitter.split_text(text)
|
| 74 |
|
| 75 |
+
# Create embeddings (using a lightweight model)
|
| 76 |
embeddings = HuggingFaceEmbeddings(
|
| 77 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 78 |
+
model_kwargs={'device': 'cpu'}
|
| 79 |
)
|
| 80 |
|
| 81 |
# Create vector store
|
| 82 |
vectorstore = FAISS.from_texts(chunks, embeddings)
|
| 83 |
|
| 84 |
+
# Initialize LLM if not already done
|
| 85 |
+
initialize_llm()
|
| 86 |
+
|
| 87 |
+
# Create memory for conversation
|
| 88 |
+
memory = ConversationBufferMemory(
|
| 89 |
+
memory_key="chat_history",
|
| 90 |
+
return_messages=True,
|
| 91 |
+
output_key="answer"
|
| 92 |
)
|
| 93 |
|
| 94 |
# Create conversational chain
|
| 95 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 96 |
+
llm=llm_pipeline,
|
| 97 |
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),
|
| 98 |
+
memory=memory,
|
| 99 |
return_source_documents=True,
|
| 100 |
verbose=False
|
| 101 |
)
|
| 102 |
|
| 103 |
+
return f"β
PDF processed successfully! Extracted {len(chunks)} text chunks. You can now ask questions!", None, None
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
except Exception as e:
|
| 106 |
+
return f"β Error processing PDF: {str(e)}", None, None
|
| 107 |
|
| 108 |
def chat(message, history):
|
| 109 |
"""Handle chat interactions"""
|
| 110 |
+
global qa_chain
|
| 111 |
|
| 112 |
if qa_chain is None:
|
| 113 |
+
return history + [[message, "β οΈ Please upload and process a PDF first!"]]
|
| 114 |
|
| 115 |
if not message.strip():
|
| 116 |
+
return history
|
| 117 |
|
| 118 |
try:
|
| 119 |
# Get response from chain
|
| 120 |
+
result = qa_chain({"question": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
answer = result["answer"]
|
| 122 |
|
| 123 |
+
# Clean up the answer (remove any system prompts)
|
| 124 |
+
if "Answer:" in answer:
|
| 125 |
+
answer = answer.split("Answer:")[-1].strip()
|
| 126 |
|
| 127 |
+
return history + [[message, answer]]
|
| 128 |
|
| 129 |
except Exception as e:
|
| 130 |
+
return history + [[message, f"β Error: {str(e)}"]]
|
| 131 |
|
| 132 |
def clear_chat():
|
| 133 |
+
"""Clear chat history and reset chain"""
|
| 134 |
+
global qa_chain
|
| 135 |
+
if qa_chain is not None and hasattr(qa_chain, 'memory'):
|
| 136 |
+
qa_chain.memory.clear()
|
| 137 |
return None
|
| 138 |
|
| 139 |
# Create Gradio interface
|
|
|
|
| 141 |
gr.Markdown(
|
| 142 |
"""
|
| 143 |
# π Chat with PDF using AI
|
| 144 |
+
Upload a PDF document and ask questions about its content - No API key required!
|
| 145 |
|
| 146 |
**Instructions:**
|
| 147 |
+
1. Upload a PDF file
|
| 148 |
+
2. Click "Process PDF" and wait for confirmation
|
| 149 |
+
3. Start asking questions about your document!
|
|
|
|
| 150 |
"""
|
| 151 |
)
|
| 152 |
|
| 153 |
with gr.Row():
|
| 154 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
pdf_input = gr.File(
|
| 156 |
+
label="π Upload PDF",
|
| 157 |
+
file_types=[".pdf"],
|
| 158 |
+
type="filepath"
|
| 159 |
)
|
| 160 |
+
process_btn = gr.Button("π Process PDF", variant="primary", size="lg")
|
| 161 |
status_output = gr.Textbox(
|
| 162 |
+
label="π Status",
|
| 163 |
+
interactive=False,
|
| 164 |
+
lines=3
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
gr.Markdown(
|
| 168 |
+
"""
|
| 169 |
+
### π‘ Tips:
|
| 170 |
+
- Processing may take 30-60 seconds
|
| 171 |
+
- Ask specific questions about the content
|
| 172 |
+
- You can ask follow-up questions
|
| 173 |
+
- Best with text-based PDFs (not scanned images)
|
| 174 |
+
"""
|
| 175 |
)
|
| 176 |
|
| 177 |
with gr.Column(scale=2):
|
| 178 |
chatbot = gr.Chatbot(
|
| 179 |
+
label="π¬ Chat History",
|
| 180 |
+
height=500,
|
| 181 |
+
bubble_full_width=False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
)
|
| 183 |
with gr.Row():
|
| 184 |
+
msg = gr.Textbox(
|
| 185 |
+
label="Your Question",
|
| 186 |
+
placeholder="Ask a question about your PDF...",
|
| 187 |
+
lines=2,
|
| 188 |
+
scale=4
|
| 189 |
+
)
|
| 190 |
+
with gr.Row():
|
| 191 |
+
submit_btn = gr.Button("π€ Send", variant="primary", scale=1)
|
| 192 |
+
clear_btn = gr.Button("ποΈ Clear Chat", scale=1)
|
| 193 |
|
| 194 |
gr.Markdown(
|
| 195 |
"""
|
| 196 |
+
---
|
| 197 |
+
### π API Access
|
| 198 |
+
Once deployed on Hugging Face Spaces, you can access this via API:
|
| 199 |
+
```python
|
| 200 |
+
# Python example
|
| 201 |
+
from gradio_client import Client
|
| 202 |
+
|
| 203 |
+
client = Client("YOUR_USERNAME/YOUR_SPACE_NAME")
|
| 204 |
+
|
| 205 |
+
# Process PDF
|
| 206 |
+
result = client.predict("path/to/file.pdf", api_name="/process_pdf")
|
| 207 |
+
|
| 208 |
+
# Ask questions
|
| 209 |
+
result = client.predict("What is this document about?", [], api_name="/chat")
|
| 210 |
+
```
|
| 211 |
+
|
| 212 |
+
```javascript
|
| 213 |
+
// JavaScript example
|
| 214 |
+
const response = await fetch("https://YOUR_USERNAME-YOUR_SPACE_NAME.hf.space/api/predict", {
|
| 215 |
+
method: "POST",
|
| 216 |
+
headers: { "Content-Type": "application/json" },
|
| 217 |
+
body: JSON.stringify({
|
| 218 |
+
data: ["What is this document about?", []]
|
| 219 |
+
})
|
| 220 |
+
});
|
| 221 |
+
```
|
| 222 |
"""
|
| 223 |
)
|
| 224 |
|
| 225 |
# Event handlers
|
| 226 |
process_btn.click(
|
| 227 |
fn=process_pdf,
|
| 228 |
+
inputs=[pdf_input],
|
| 229 |
+
outputs=[status_output, chatbot, msg]
|
| 230 |
)
|
| 231 |
|
| 232 |
+
msg.submit(
|
| 233 |
fn=chat,
|
| 234 |
inputs=[msg, chatbot],
|
| 235 |
+
outputs=[chatbot]
|
| 236 |
).then(
|
| 237 |
+
fn=lambda: "",
|
| 238 |
+
outputs=[msg]
|
|
|
|
| 239 |
)
|
| 240 |
|
| 241 |
+
submit_btn.click(
|
| 242 |
fn=chat,
|
| 243 |
inputs=[msg, chatbot],
|
| 244 |
+
outputs=[chatbot]
|
| 245 |
).then(
|
| 246 |
+
fn=lambda: "",
|
| 247 |
+
outputs=[msg]
|
|
|
|
| 248 |
)
|
| 249 |
|
| 250 |
clear_btn.click(
|
|
|
|
| 252 |
outputs=[chatbot]
|
| 253 |
)
|
| 254 |
|
| 255 |
+
# Initialize model on startup
|
| 256 |
+
initialize_llm()
|
| 257 |
+
|
| 258 |
if __name__ == "__main__":
|
| 259 |
+
demo.launch(share=False)
|