Spaces:
Sleeping
Sleeping
File size: 10,094 Bytes
4335246 aefddc0 4335246 5e0cf9a 4335246 d4cf179 aefddc0 4335246 779bb9b 6d6de4b 4335246 d4cf179 779bb9b 5e0cf9a 4335246 62e465d aefddc0 d4cf179 aefddc0 4335246 d4cf179 d155428 4335246 aefddc0 8558e29 aefddc0 8558e29 aefddc0 4335246 8558e29 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 62e465d 5e0cf9a 4335246 5e0cf9a aefddc0 5e0cf9a 4335246 5e0cf9a 4335246 d4cf179 5e0cf9a 4335246 aefddc0 d4cf179 5e0cf9a d4cf179 aefddc0 4335246 5e0cf9a aefddc0 4335246 5e0cf9a 4335246 d4cf179 4335246 d155428 779bb9b 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a aefddc0 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 5e0cf9a 4335246 aefddc0 5e0cf9a aefddc0 5e0cf9a aefddc0 5e0cf9a 4335246 5e0cf9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# streamlit_data_analysis_app.py
# Streamlit Data Analysis App using Gemini 2.0 Flash (Free-tier)
# Features:
# - Upload CSV / Excel
# - Automatic cleaning & standardization
# - Preprocessing (imputation, encoding, scaling)
# - Quick visualizations
# - Dataset summary + preview
# - Insights powered by Gemini 2.0 Flash (Google AI)
import os
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
import google.generativeai as genai
# ---------- CONFIGURATION ----------
st.set_page_config(page_title="Data Analysis App", layout="wide")
# Load Gemini API key safely
try:
GEMINI_API_KEY = st.secrets["GEMINI_API_KEY"]
except Exception:
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
st.success("β
Gemini API key loaded successfully.")
else:
st.warning("β οΈ No Gemini API key found. Please add GEMINI_API_KEY to .env or Streamlit secrets.")
# ---------- UTILITIES ----------
def read_file(uploaded_file):
"""Read uploaded file and return DataFrame"""
name = uploaded_file.name.lower()
try:
if name.endswith(('.csv', '.txt')):
# β
FIX: Remove 'errors' argument
return pd.read_csv(uploaded_file, encoding="utf-8")
elif name.endswith(('.xls', '.xlsx')):
return pd.read_excel(uploaded_file)
else:
raise ValueError("Unsupported file type. Please upload CSV or Excel.")
except UnicodeDecodeError:
# fallback encoding if utf-8 fails
return pd.read_csv(uploaded_file, encoding="latin1")
except Exception as e:
st.error(f"β File reading failed: {e}")
raise
def clean_column_name(col: str) -> str:
col = str(col).strip().lower().replace("\n", " ").replace("\t", " ")
col = "_".join(col.split())
col = ''.join(c for c in col if (c.isalnum() or c == '_'))
while '__' in col:
col = col.replace('__', '_')
return col
def standardize_dataframe(df: pd.DataFrame, drop_all_nan_cols: bool = True) -> pd.DataFrame:
df = df.copy()
for c in df.select_dtypes(include=['object']).columns:
df[c] = df[c].apply(lambda x: x.strip() if isinstance(x, str) else x)
df.columns = [clean_column_name(c) for c in df.columns]
if drop_all_nan_cols:
df.dropna(axis=1, how='all', inplace=True)
for c in df.columns:
if df[c].dtype == object:
sample = df[c].dropna().astype(str).head(20)
if not sample.empty:
parsed = pd.to_datetime(sample, errors='coerce')
if parsed.notna().sum() / len(sample) > 0.6:
df[c] = pd.to_datetime(df[c], errors='coerce')
return df
def summarize_dataframe(df: pd.DataFrame, max_rows: int = 5):
summary = {'shape': df.shape, 'columns': [], 'preview': df.head(max_rows).to_dict(orient='records')}
for c in df.columns:
info = {'name': c, 'dtype': str(df[c].dtype), 'n_missing': int(df[c].isna().sum()), 'n_unique': int(df[c].nunique(dropna=True))}
if pd.api.types.is_numeric_dtype(df[c]):
info['summary'] = df[c].describe().to_dict()
elif pd.api.types.is_datetime64_any_dtype(df[c]):
info['summary'] = {'min': str(df[c].min()), 'max': str(df[c].max())}
else:
info['top_values'] = df[c].astype(str).value_counts().head(5).to_dict()
summary['columns'].append(info)
return summary
def prepare_preprocessing_pipeline(df: pd.DataFrame, impute_strategy_num='median', scale_numeric=True, encode_categorical='onehot'):
numeric_cols = list(df.select_dtypes(include=[np.number]).columns)
cat_cols = list(df.select_dtypes(include=['object', 'category', 'bool']).columns)
transformers = []
if numeric_cols:
num_pipe = [('imputer', SimpleImputer(strategy=impute_strategy_num))]
if scale_numeric:
num_pipe.append(('scaler', StandardScaler()))
transformers.append(('num', Pipeline(num_pipe), numeric_cols))
if cat_cols:
if encode_categorical == 'onehot':
cat_pipe = Pipeline([
('imputer', SimpleImputer(strategy='most_frequent')),
('onehot', OneHotEncoder(handle_unknown='ignore', sparse=False))
])
else:
cat_pipe = Pipeline([
('imputer', SimpleImputer(strategy='most_frequent')),
('ord', OrdinalEncoder())
])
transformers.append(('cat', cat_pipe, cat_cols))
return ColumnTransformer(transformers), numeric_cols + cat_cols
def apply_preprocessing(df: pd.DataFrame, preprocessor: ColumnTransformer) -> pd.DataFrame:
X = preprocessor.fit_transform(df)
feature_names = []
for name, trans, cols in preprocessor.transformers_:
if name == 'num':
feature_names += cols
elif name == 'cat':
try:
ohe = trans.named_steps['onehot']
for col, cats in zip(cols, ohe.categories_):
feature_names += [f"{col}__{c}" for c in cats]
except Exception:
feature_names += cols
return pd.DataFrame(X, columns=feature_names)
# ---------- LLM (Gemini only) ----------
def build_dataset_prompt(summary, user_question=None):
s = [f"Dataset shape: {summary['shape'][0]} rows, {summary['shape'][1]} columns."]
for c in summary['columns']:
s.append(f"- {c['name']} ({c['dtype']}) missing={c['n_missing']} unique={c['n_unique']}")
s.append("Preview:")
for row in summary['preview']:
s.append(str(row))
if user_question:
s.append(f"User question: {user_question}")
else:
s.append("Please provide a summary, notable patterns, and suggestions for visualizations.")
return "\n".join(s)
def call_llm_gemini(prompt: str, model="gemini-2.0-flash"):
if not GEMINI_API_KEY:
return "β οΈ Gemini API key not found."
try:
model_obj = genai.GenerativeModel(model)
response = model_obj.generate_content(prompt)
return response.text
except Exception as e:
return f"β Gemini call failed: {e}"
# ---------- STREAMLIT UI ----------
st.title("π Data Analysis & Cleaning App (Gemini-Powered)")
st.markdown("Upload CSV or Excel, clean and preprocess it, visualize data, and get insights powered by **Gemini 2.0 Flash**.")
with st.sidebar:
st.header("βοΈ Options")
st.info("Using **Gemini 2.0 Flash (Google AI)** for insights.")
impute_strategy_num = st.selectbox("Numeric imputation", ['mean', 'median', 'most_frequent'])
encode_categorical = st.selectbox("Categorical encoding", ['onehot', 'ordinal'])
scale_numeric = st.checkbox("Scale numeric features", True)
show_raw_preview = st.checkbox("Show raw preview", True)
uploaded_file = st.file_uploader("π Upload CSV or Excel file", type=['csv', 'xls', 'xlsx', 'txt'])
if uploaded_file:
# β
FIX: Save to /tmp for Hugging Face Spaces compatibility
temp_path = os.path.join("/tmp", uploaded_file.name)
with open(temp_path, "wb") as f:
f.write(uploaded_file.getbuffer())
with open(temp_path, "rb") as f:
raw_df = read_file(f)
if show_raw_preview:
st.subheader("Raw Data Preview")
st.dataframe(raw_df.head())
st.subheader("Data Cleaning & Standardization")
cleaned_df = standardize_dataframe(raw_df)
st.write(f"β
Cleaned data shape: {cleaned_df.shape}")
st.dataframe(cleaned_df.head())
st.subheader("Summary")
summary = summarize_dataframe(cleaned_df)
st.write(f"Shape: {summary['shape']}")
st.json(summary['columns'])
st.subheader("Preprocessing")
if st.button("Generate Preprocessing Pipeline"):
preproc, _ = prepare_preprocessing_pipeline(cleaned_df, impute_strategy_num, scale_numeric, encode_categorical)
processed_df = apply_preprocessing(cleaned_df, preproc)
st.success("Preprocessing complete!")
st.dataframe(processed_df.head())
st.download_button("β¬οΈ Download Processed CSV", processed_df.to_csv(index=False), "processed_data.csv")
st.subheader("Visualizations")
viz_col = st.selectbox("Select column", options=cleaned_df.columns)
viz_type = st.selectbox("Visualization type", ['Histogram', 'Boxplot', 'Bar (categorical)', 'Scatter', 'Correlation heatmap'])
if viz_type == 'Scatter':
second_col = st.selectbox("Second column", options=[c for c in cleaned_df.columns if c != viz_col])
if st.button("Show Visualization"):
fig, ax = plt.subplots(figsize=(8, 5))
try:
if viz_type == 'Histogram':
sns.histplot(cleaned_df[viz_col], kde=True, ax=ax)
elif viz_type == 'Boxplot':
sns.boxplot(x=cleaned_df[viz_col], ax=ax)
elif viz_type == 'Bar (categorical)':
counts = cleaned_df[viz_col].astype(str).value_counts().head(20)
sns.barplot(x=counts.values, y=counts.index, ax=ax)
elif viz_type == 'Scatter':
sns.scatterplot(x=cleaned_df[viz_col], y=cleaned_df[second_col], ax=ax)
elif viz_type == 'Correlation heatmap':
corr = cleaned_df.select_dtypes(include=[np.number]).corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', ax=ax)
st.pyplot(fig)
except Exception as e:
st.error(f"Visualization failed: {e}")
st.subheader("π§ Ask Gemini for Insights")
user_q = st.text_area("Enter your question (optional):")
if st.button("Get Insights"):
with st.spinner("Generating insights via Gemini..."):
prompt = build_dataset_prompt(summary, user_q if user_q else None)
llm_resp = call_llm_gemini(prompt)
st.write(llm_resp)
else:
st.info("π₯ Upload a file to begin.")
|