Spaces:
Sleeping
Sleeping
File size: 10,101 Bytes
779bb9b 4335246 8ee580a aefddc0 8ee580a aefddc0 8ee580a 4335246 d4cf179 8ee580a d4cf179 8ee580a 5e0cf9a 8ee580a 4335246 8ee580a 1eb934c 8ee580a 4335246 8ee580a 4335246 8ee580a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
import plotly.figure_factory as ff
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
from io import StringIO
# ======================================================
# βοΈ APP CONFIGURATION
# ======================================================
st.set_page_config(page_title="π Smart Data Analyst Pro", layout="wide")
st.title("π Smart Data Analyst Pro")
st.caption("AI that cleans, analyzes, and visualizes your data β powered by Hugging Face Inference API.")
# ======================================================
# π Load Environment Variables
# ======================================================
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
if not HF_TOKEN:
st.error("β Missing HF_TOKEN. Please set it in your .env file.")
else:
login(token=HF_TOKEN)
# ======================================================
# π§ MODEL SETUP
# ======================================================
with st.sidebar:
st.header("βοΈ Model Settings")
CLEANER_MODEL = st.selectbox(
"Select Cleaner Model:",
[
"Qwen/Qwen2.5-Coder-7B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"microsoft/Phi-3-mini-4k-instruct",
"mistralai/Mistral-7B-Instruct-v0.3"
],
index=0
)
ANALYST_MODEL = st.selectbox(
"Select Analysis Model:",
[
"Qwen/Qwen2.5-14B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"HuggingFaceH4/zephyr-7b-beta"
],
index=0
)
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
max_tokens = st.slider("Max Tokens", 128, 2048, 512)
# Initialize inference clients
cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN)
# ======================================================
# π§© SAFE GENERATION FUNCTION
# ======================================================
def safe_hf_generate(client, prompt, temperature=0.3, max_tokens=512):
"""
Tries text_generation first, then falls back to chat_completion if not supported.
Returns plain string content.
"""
try:
resp = client.text_generation(
prompt,
temperature=temperature,
max_new_tokens=max_tokens,
return_full_text=False,
)
return resp.strip()
except Exception as e:
if "Supported task: conversational" in str(e) or "not supported" in str(e):
chat_resp = client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature,
)
return chat_resp["choices"][0]["message"]["content"].strip()
else:
raise e
# ======================================================
# π§© SMART DATA CLEANING
# ======================================================
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
"""Backup rule-based cleaner."""
df = df.copy()
df.dropna(axis=1, how="all", inplace=True)
df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
for col in df.columns:
if df[col].dtype == "O":
if not df[col].mode().empty:
df[col].fillna(df[col].mode()[0], inplace=True)
else:
df[col].fillna("Unknown", inplace=True)
else:
df[col].fillna(df[col].median(), inplace=True)
df.drop_duplicates(inplace=True)
return df
def ai_clean_dataset(df: pd.DataFrame) -> pd.DataFrame:
"""Cleans the dataset using the selected AI model. Falls back gracefully if the model fails."""
raw_preview = df.head(5).to_csv(index=False)
prompt = f"""
You are a professional data cleaning assistant.
Clean and standardize the dataset below dynamically:
1. Handle missing values
2. Fix column name inconsistencies
3. Convert data types (dates, numbers, categories)
4. Remove irrelevant or duplicate rows
Return ONLY a valid CSV text (no markdown, no explanations).
--- RAW SAMPLE ---
{raw_preview}
"""
try:
cleaned_str = safe_hf_generate(cleaner_client, prompt, temperature=0.1, max_tokens=1024)
except Exception as e:
st.warning(f"β οΈ AI cleaning failed: {e}")
return fallback_clean(df)
cleaned_str = (
cleaned_str.replace("```csv", "")
.replace("```", "")
.replace("###", "")
.replace(";", ",")
.strip()
)
lines = cleaned_str.splitlines()
lines = [line for line in lines if "," in line and not line.lower().startswith(("note", "summary"))]
cleaned_str = "\n".join(lines)
try:
cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
cleaned_df = cleaned_df.dropna(axis=1, how="all")
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
return cleaned_df
except Exception as e:
st.warning(f"β οΈ AI CSV parse failed: {e}")
return fallback_clean(df)
def summarize_dataframe(df: pd.DataFrame) -> str:
"""Generate a concise summary of the dataframe."""
lines = [f"Rows: {len(df)} | Columns: {len(df.columns)}", "Column summaries:"]
for col in df.columns[:10]:
non_null = int(df[col].notnull().sum())
if pd.api.types.is_numeric_dtype(df[col]):
desc = df[col].describe().to_dict()
mean = float(desc.get("mean", np.nan))
median = float(df[col].median()) if non_null > 0 else None
lines.append(f"- {col}: mean={mean:.3f}, median={median}, non_null={non_null}")
else:
top = df[col].value_counts().head(3).to_dict()
lines.append(f"- {col}: top_values={top}, non_null={non_null}")
return "\n".join(lines)
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
"""Send the dataframe and user query to the analysis model for interpretation."""
df_summary = summarize_dataframe(df)
sample = df.head(6).to_csv(index=False)
prompt = f"""
You are a professional data analyst.
Analyze the dataset '{dataset_name}' and answer the user's question.
--- SUMMARY ---
{df_summary}
--- SAMPLE DATA ---
{sample}
--- USER QUESTION ---
{user_query}
Respond with:
1. Key insights and patterns
2. Quantitative findings
3. Notable relationships or anomalies
4. Data-driven recommendations
"""
try:
response = safe_hf_generate(analyst_client, prompt, temperature=temperature, max_tokens=max_tokens)
return response
except Exception as e:
return f"β οΈ Analysis failed: {e}"
# ======================================================
# π MAIN APP LOGIC
# ======================================================
uploaded = st.file_uploader("π Upload CSV or Excel file", type=["csv", "xlsx"])
if uploaded:
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
with st.spinner("π§Ό AI Cleaning your dataset..."):
cleaned_df = ai_clean_dataset(df)
st.subheader("β
Cleaned Dataset Preview")
st.dataframe(cleaned_df.head(), use_container_width=True)
with st.expander("π Cleaning Summary", expanded=False):
st.text(summarize_dataframe(cleaned_df))
with st.expander("π Quick Visualizations", expanded=True):
numeric_cols = cleaned_df.select_dtypes(include="number").columns.tolist()
categorical_cols = cleaned_df.select_dtypes(exclude="number").columns.tolist()
viz_type = st.selectbox(
"Visualization Type",
["Scatter Plot", "Histogram", "Box Plot", "Correlation Heatmap", "Categorical Count"]
)
if viz_type == "Scatter Plot" and len(numeric_cols) >= 2:
x = st.selectbox("X-axis", numeric_cols)
y = st.selectbox("Y-axis", numeric_cols, index=min(1, len(numeric_cols)-1))
color = st.selectbox("Color", ["None"] + categorical_cols)
fig = px.scatter(cleaned_df, x=x, y=y, color=None if color=="None" else color)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Histogram" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.histogram(cleaned_df, x=col, nbins=30)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Box Plot" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.box(cleaned_df, y=col)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Correlation Heatmap" and len(numeric_cols) > 1:
corr = cleaned_df[numeric_cols].corr()
fig = ff.create_annotated_heatmap(
z=corr.values,
x=list(corr.columns),
y=list(corr.index),
annotation_text=corr.round(2).values,
showscale=True
)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Categorical Count" and categorical_cols:
cat = st.selectbox("Category", categorical_cols)
fig = px.bar(cleaned_df[cat].value_counts().reset_index(), x="index", y=cat)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("β οΈ Not enough columns for this visualization type.")
st.subheader("π¬ Ask AI About Your Data")
user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales the most?")
if st.button("Analyze with AI", use_container_width=True) and user_query:
with st.spinner("π€ Interpreting data..."):
result = query_analysis_model(cleaned_df, user_query, uploaded.name)
st.markdown("### π‘ Insights")
st.markdown(result)
else:
st.info("π₯ Upload a dataset to begin smart analysis.")
|