Spaces:
Sleeping
Sleeping
File size: 2,886 Bytes
6d6de4b 431a9ef 299ea90 6d6de4b 431a9ef 6d6de4b 431a9ef 6d6de4b 431a9ef 6d6de4b 431a9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
title: "Data Analysis App"
emoji: "π"
colorFrom: "indigo"
colorTo: "blue"
sdk: "streamlit"
sdk_version: "1.39.0"
app_file: src/streamlit_app.py
pinned: false
license: "mit"
---
# π Streamlit Data Analysis App (Gemini + Open-Source)
This Streamlit app lets you **upload CSV or Excel datasets**, automatically clean and preprocess them, create **quick visualizations**, and even get **AI-generated insights** powered by Gemini or open-source models.
---
## π Features
β
Upload `.csv` or `.xlsx` datasets
β
Automatic data cleaning & standardization
β
Preprocessing pipeline (imputation, encoding, scaling)
β
Quick visualizations (histogram, boxplot, correlation heatmap, etc.)
β
Smart dataset summary and preview
β
Optional **Gemini AI insights** for dataset interpretation
---
## π§ LLM Integration (Optional)
You can enable AI-generated insights with **Gemini 2.0 Flash** or your own Hugging Face model.
### π To configure:
1. Go to your Spaceβs **Settings β Secrets** tab.
2. Add the following: GEMINI_API_KEY = your_gemini_api_key
HF_TOKEN = your_huggingface_token # optional
3. Save, then **Restart your Space**.
If you donβt add an API key, the app will still work for data cleaning and visualization.
---
## π οΈ Deployment Notes
- **Runtime:** Python SDK
- **SDK:** Streamlit
- **File formats supported:** `.csv`, `.xlsx`
- **Maximum file size:** 100 MB
- **Recommended visibility:** Public (for full file upload support)
---
## βοΈ Troubleshooting
### β AxiosError: Request failed with status code 403
If you encounter this:
- Ensure your Space is **Public** (not Private).
- Ensure `sdk: streamlit` and `app_file:` are correctly declared in the YAML metadata above.
- Check that your **runtime** is βPython SDKβ.
- Recheck your **Gemini API Key** or token secrets.
### β
Fix Checklist
| Issue | Fix |
|-------|------|
| App fails to start | Verify `app_file` matches your actual Python filename |
| 403 Error | Make the Space public |
| API not found | Add key to **Settings β Secrets** |
| File upload broken | Ensure `sdk: streamlit` and `runtime: python` |
---
## π‘ Example Workflow
1. Upload your dataset (e.g., `global_freelancers_raw.csv`).
2. View the raw preview and cleaned data table.
3. Generate preprocessing pipelines (e.g., median imputation + one-hot encoding).
4. Visualize trends with histograms, boxplots, or heatmaps.
5. (Optional) Ask Gemini for AI insights about correlations, patterns, or recommendations.
---
## π§© Tech Stack
- **Frontend:** Streamlit
- **Backend:** Python (Pandas, NumPy, Scikit-learn)
- **AI Models:** Gemini 2.0 Flash / open-source LLMs (Qwen, Mistral, etc.)
- **Visualization:** Matplotlib, Seaborn
---
## π§Ύ License
MIT License Β© 2025
You are free to use, modify, and share this app with attribution.
---
|