data_analysis / src /streamlit_app.py
Starberry15's picture
Update src/streamlit_app.py
8ee580a verified
raw
history blame
10.1 kB
import os
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
import plotly.figure_factory as ff
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
from io import StringIO
# ======================================================
# βš™οΈ APP CONFIGURATION
# ======================================================
st.set_page_config(page_title="πŸ“Š Smart Data Analyst Pro", layout="wide")
st.title("πŸ“Š Smart Data Analyst Pro")
st.caption("AI that cleans, analyzes, and visualizes your data β€” powered by Hugging Face Inference API.")
# ======================================================
# πŸ” Load Environment Variables
# ======================================================
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
if not HF_TOKEN:
st.error("❌ Missing HF_TOKEN. Please set it in your .env file.")
else:
login(token=HF_TOKEN)
# ======================================================
# 🧠 MODEL SETUP
# ======================================================
with st.sidebar:
st.header("βš™οΈ Model Settings")
CLEANER_MODEL = st.selectbox(
"Select Cleaner Model:",
[
"Qwen/Qwen2.5-Coder-7B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"microsoft/Phi-3-mini-4k-instruct",
"mistralai/Mistral-7B-Instruct-v0.3"
],
index=0
)
ANALYST_MODEL = st.selectbox(
"Select Analysis Model:",
[
"Qwen/Qwen2.5-14B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"HuggingFaceH4/zephyr-7b-beta"
],
index=0
)
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
max_tokens = st.slider("Max Tokens", 128, 2048, 512)
# Initialize inference clients
cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN)
# ======================================================
# 🧩 SAFE GENERATION FUNCTION
# ======================================================
def safe_hf_generate(client, prompt, temperature=0.3, max_tokens=512):
"""
Tries text_generation first, then falls back to chat_completion if not supported.
Returns plain string content.
"""
try:
resp = client.text_generation(
prompt,
temperature=temperature,
max_new_tokens=max_tokens,
return_full_text=False,
)
return resp.strip()
except Exception as e:
if "Supported task: conversational" in str(e) or "not supported" in str(e):
chat_resp = client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature,
)
return chat_resp["choices"][0]["message"]["content"].strip()
else:
raise e
# ======================================================
# 🧩 SMART DATA CLEANING
# ======================================================
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
"""Backup rule-based cleaner."""
df = df.copy()
df.dropna(axis=1, how="all", inplace=True)
df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
for col in df.columns:
if df[col].dtype == "O":
if not df[col].mode().empty:
df[col].fillna(df[col].mode()[0], inplace=True)
else:
df[col].fillna("Unknown", inplace=True)
else:
df[col].fillna(df[col].median(), inplace=True)
df.drop_duplicates(inplace=True)
return df
def ai_clean_dataset(df: pd.DataFrame) -> pd.DataFrame:
"""Cleans the dataset using the selected AI model. Falls back gracefully if the model fails."""
raw_preview = df.head(5).to_csv(index=False)
prompt = f"""
You are a professional data cleaning assistant.
Clean and standardize the dataset below dynamically:
1. Handle missing values
2. Fix column name inconsistencies
3. Convert data types (dates, numbers, categories)
4. Remove irrelevant or duplicate rows
Return ONLY a valid CSV text (no markdown, no explanations).
--- RAW SAMPLE ---
{raw_preview}
"""
try:
cleaned_str = safe_hf_generate(cleaner_client, prompt, temperature=0.1, max_tokens=1024)
except Exception as e:
st.warning(f"⚠️ AI cleaning failed: {e}")
return fallback_clean(df)
cleaned_str = (
cleaned_str.replace("```csv", "")
.replace("```", "")
.replace("###", "")
.replace(";", ",")
.strip()
)
lines = cleaned_str.splitlines()
lines = [line for line in lines if "," in line and not line.lower().startswith(("note", "summary"))]
cleaned_str = "\n".join(lines)
try:
cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
cleaned_df = cleaned_df.dropna(axis=1, how="all")
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
return cleaned_df
except Exception as e:
st.warning(f"⚠️ AI CSV parse failed: {e}")
return fallback_clean(df)
def summarize_dataframe(df: pd.DataFrame) -> str:
"""Generate a concise summary of the dataframe."""
lines = [f"Rows: {len(df)} | Columns: {len(df.columns)}", "Column summaries:"]
for col in df.columns[:10]:
non_null = int(df[col].notnull().sum())
if pd.api.types.is_numeric_dtype(df[col]):
desc = df[col].describe().to_dict()
mean = float(desc.get("mean", np.nan))
median = float(df[col].median()) if non_null > 0 else None
lines.append(f"- {col}: mean={mean:.3f}, median={median}, non_null={non_null}")
else:
top = df[col].value_counts().head(3).to_dict()
lines.append(f"- {col}: top_values={top}, non_null={non_null}")
return "\n".join(lines)
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
"""Send the dataframe and user query to the analysis model for interpretation."""
df_summary = summarize_dataframe(df)
sample = df.head(6).to_csv(index=False)
prompt = f"""
You are a professional data analyst.
Analyze the dataset '{dataset_name}' and answer the user's question.
--- SUMMARY ---
{df_summary}
--- SAMPLE DATA ---
{sample}
--- USER QUESTION ---
{user_query}
Respond with:
1. Key insights and patterns
2. Quantitative findings
3. Notable relationships or anomalies
4. Data-driven recommendations
"""
try:
response = safe_hf_generate(analyst_client, prompt, temperature=temperature, max_tokens=max_tokens)
return response
except Exception as e:
return f"⚠️ Analysis failed: {e}"
# ======================================================
# πŸš€ MAIN APP LOGIC
# ======================================================
uploaded = st.file_uploader("πŸ“Ž Upload CSV or Excel file", type=["csv", "xlsx"])
if uploaded:
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
with st.spinner("🧼 AI Cleaning your dataset..."):
cleaned_df = ai_clean_dataset(df)
st.subheader("βœ… Cleaned Dataset Preview")
st.dataframe(cleaned_df.head(), use_container_width=True)
with st.expander("πŸ“‹ Cleaning Summary", expanded=False):
st.text(summarize_dataframe(cleaned_df))
with st.expander("πŸ“ˆ Quick Visualizations", expanded=True):
numeric_cols = cleaned_df.select_dtypes(include="number").columns.tolist()
categorical_cols = cleaned_df.select_dtypes(exclude="number").columns.tolist()
viz_type = st.selectbox(
"Visualization Type",
["Scatter Plot", "Histogram", "Box Plot", "Correlation Heatmap", "Categorical Count"]
)
if viz_type == "Scatter Plot" and len(numeric_cols) >= 2:
x = st.selectbox("X-axis", numeric_cols)
y = st.selectbox("Y-axis", numeric_cols, index=min(1, len(numeric_cols)-1))
color = st.selectbox("Color", ["None"] + categorical_cols)
fig = px.scatter(cleaned_df, x=x, y=y, color=None if color=="None" else color)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Histogram" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.histogram(cleaned_df, x=col, nbins=30)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Box Plot" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.box(cleaned_df, y=col)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Correlation Heatmap" and len(numeric_cols) > 1:
corr = cleaned_df[numeric_cols].corr()
fig = ff.create_annotated_heatmap(
z=corr.values,
x=list(corr.columns),
y=list(corr.index),
annotation_text=corr.round(2).values,
showscale=True
)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Categorical Count" and categorical_cols:
cat = st.selectbox("Category", categorical_cols)
fig = px.bar(cleaned_df[cat].value_counts().reset_index(), x="index", y=cat)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("⚠️ Not enough columns for this visualization type.")
st.subheader("πŸ’¬ Ask AI About Your Data")
user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales the most?")
if st.button("Analyze with AI", use_container_width=True) and user_query:
with st.spinner("πŸ€– Interpreting data..."):
result = query_analysis_model(cleaned_df, user_query, uploaded.name)
st.markdown("### πŸ’‘ Insights")
st.markdown(result)
else:
st.info("πŸ“₯ Upload a dataset to begin smart analysis.")