data_analysis / src /streamlit_app.py
Starberry15's picture
Update src/streamlit_app.py
42f3f9c verified
import os
import pandas as pd
import numpy as np
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
import google.generativeai as genai
from io import StringIO
import time
import requests
# ======================================================
# βš™οΈ APP CONFIGURATION
# ======================================================
st.set_page_config(page_title="πŸ“Š Smart Data Analyst Pro", layout="wide")
st.title("πŸ“Š Smart Data Analyst Pro (Chat Mode)")
st.caption("Chat with your dataset β€” AI cleans, analyzes, and visualizes data. Hugging Face + Gemini compatible.")
# ======================================================
# πŸ” Load Environment Variables
# ======================================================
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not HF_TOKEN:
st.error("❌ Missing HF_TOKEN. Please set it in your .env file.")
else:
login(token=HF_TOKEN)
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.warning("⚠️ Gemini API key missing. Gemini 2.5 Flash will not work.")
# ======================================================
# 🧠 MODEL SETUP
# ======================================================
with st.sidebar:
st.header("βš™οΈ Model Settings")
CLEANER_MODEL = st.selectbox(
"Select Cleaner Model:",
[
"Qwen/Qwen2.5-Coder-14B",
"mistralai/Mistral-7B-Instruct-v0.3"
],
index=0
)
ANALYST_MODEL = st.selectbox(
"Select Analysis Model:",
[
"Gemini 2.5 Flash (Google)",
"Qwen/Qwen2.5-14B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"HuggingFaceH4/zephyr-7b-beta"
],
index=0
)
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
max_tokens = st.slider("Max Tokens", 128, 4096, 1024)
hf_cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
hf_analyst_client = None
if ANALYST_MODEL != "Gemini 2.5 Flash (Google)":
hf_analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN)
# ======================================================
# 🧩 SAFE GENERATION FUNCTION
# ======================================================
def safe_hf_generate(client, prompt, temperature=0.3, max_tokens=512, retries=2):
"""Try text generation, with retry + fallback on service errors."""
for attempt in range(retries + 1):
try:
resp = client.text_generation(
prompt,
temperature=temperature,
max_new_tokens=max_tokens,
return_full_text=False,
)
return resp.strip()
except Exception as e:
err = str(e)
# 🩹 FIX: Handle common server overloads gracefully
if "503" in err or "Service Temporarily Unavailable" in err:
time.sleep(2)
if attempt < retries:
continue # retry
else:
return "⚠️ The Hugging Face model is temporarily unavailable. Please try again or switch to Gemini."
elif "Supported task: conversational" in err:
chat_resp = client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature,
)
return chat_resp["choices"][0]["message"]["content"].strip()
else:
raise e
return "⚠️ Failed after retries."
# ======================================================
# 🧩 DATA CLEANING
# ======================================================
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy()
df.dropna(axis=1, how="all", inplace=True)
df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
for col in df.columns:
if df[col].dtype == "O":
if not df[col].mode().empty:
df[col].fillna(df[col].mode()[0], inplace=True)
else:
df[col].fillna("Unknown", inplace=True)
else:
df[col].fillna(df[col].median(), inplace=True)
df.drop_duplicates(inplace=True)
return df
def ai_clean_dataset(df: pd.DataFrame) -> (pd.DataFrame, str):
if len(df) > 50:
return df, "⚠️ AI cleaning skipped: dataset has more than 50 rows."
csv_text = df.to_csv(index=False)
prompt = f"""
You are a professional data cleaning assistant.
Clean and standardize the dataset below dynamically:
1. Handle missing values
2. Fix column name inconsistencies
3. Convert data types (dates, numbers, categories)
4. Remove irrelevant or duplicate rows
Return ONLY a valid CSV text (no markdown, no explanations).
Dataset:
{csv_text}
"""
try:
cleaned_str = safe_hf_generate(hf_cleaner_client, prompt, temperature=0.1, max_tokens=4096)
cleaned_str = cleaned_str.replace("```csv", "").replace("```", "").replace("###", "").strip()
cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
return cleaned_df, "βœ… AI cleaning completed successfully."
except Exception as e:
return df, f"⚠️ AI cleaning failed: {str(e)}"
# ======================================================
# 🧩 DATA SUMMARY (Token-efficient)
# ======================================================
def summarize_for_analysis(df: pd.DataFrame, sample_rows=10) -> str:
summary = [f"Rows: {len(df)}, Columns: {len(df.columns)}"]
for col in df.columns:
non_null = int(df[col].notnull().sum())
if pd.api.types.is_numeric_dtype(df[col]):
desc = df[col].describe().to_dict()
summary.append(f"- {col}: mean={desc.get('mean', np.nan):.2f}, median={df[col].median():.2f}, non_null={non_null}")
else:
top = df[col].value_counts().head(3).to_dict()
summary.append(f"- {col}: top_values={top}, non_null={non_null}")
sample = df.head(sample_rows).to_csv(index=False)
summary.append("--- Sample Data ---")
summary.append(sample)
return "\n".join(summary)
# ======================================================
# 🧠 ANALYSIS FUNCTION
# ======================================================
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
prompt_summary = summarize_for_analysis(df)
prompt = f"""
You are a professional data analyst.
Analyze the dataset '{dataset_name}' and answer the user's question.
--- DATA SUMMARY ---
{prompt_summary}
--- USER QUESTION ---
{user_query}
Respond with:
1. Key insights and patterns
2. Quantitative findings
3. Notable relationships or anomalies
4. Data-driven recommendations
"""
try:
if ANALYST_MODEL == "Gemini 2.5 Flash (Google)":
response = genai.GenerativeModel("gemini-2.5-flash").generate_content(
prompt,
generation_config={
"temperature": temperature,
"max_output_tokens": max_tokens
}
)
return response.text if hasattr(response, "text") else "No valid text response."
else:
# 🩹 FIX: wrap in retry-aware generator
result = safe_hf_generate(hf_analyst_client, prompt, temperature=temperature, max_tokens=max_tokens)
# fallback to Gemini if Hugging Face failed entirely
if "temporarily unavailable" in result.lower() and GEMINI_API_KEY:
alt = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt)
return f"πŸ”„ Fallback to Gemini:\n\n{alt.text}"
return result
except Exception as e:
# 🩹 FIX: fallback if server rejects or 5xx
if "503" in str(e) and GEMINI_API_KEY:
response = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt)
return f"πŸ”„ Fallback to Gemini due to 503 error:\n\n{response.text}"
return f"⚠️ Analysis failed: {str(e)}"
# ======================================================
# πŸš€ MAIN CHATBOT LOGIC
# ======================================================
uploaded = st.file_uploader("πŸ“Ž Upload CSV or Excel file", type=["csv", "xlsx"])
if "messages" not in st.session_state:
st.session_state.messages = []
if uploaded:
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
with st.spinner("🧼 Cleaning your dataset..."):
cleaned_df, cleaning_status = ai_clean_dataset(df)
st.subheader("βœ… Cleaning Status")
st.info(cleaning_status)
st.subheader("πŸ“Š Dataset Preview")
st.dataframe(cleaned_df.head(), use_container_width=True)
st.subheader("πŸ’¬ Chat with Your Dataset")
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
if user_query := st.chat_input("Ask something about your dataset..."):
st.session_state.messages.append({"role": "user", "content": user_query})
with st.chat_message("user"):
st.markdown(user_query)
with st.chat_message("assistant"):
with st.spinner("πŸ€– Analyzing..."):
result = query_analysis_model(cleaned_df, user_query, uploaded.name)
st.markdown(result)
st.session_state.messages.append({"role": "assistant", "content": result})
else:
st.info("πŸ“₯ Upload a dataset to begin chatting with your AI analyst.")