Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +14 -51
src/streamlit_app.py
CHANGED
|
@@ -112,10 +112,15 @@ def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 112 |
return df
|
| 113 |
|
| 114 |
def ai_clean_dataset(df: pd.DataFrame) -> (pd.DataFrame, str):
|
| 115 |
-
"""
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
csv_text = df.to_csv(index=False)
|
| 121 |
prompt = f"""
|
|
@@ -137,7 +142,8 @@ Dataset:
|
|
| 137 |
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
|
| 138 |
return cleaned_df, ""
|
| 139 |
except Exception as e:
|
| 140 |
-
|
|
|
|
| 141 |
|
| 142 |
# ======================================================
|
| 143 |
# 🧩 DATA ANALYSIS
|
|
@@ -187,59 +193,16 @@ if uploaded:
|
|
| 187 |
with st.spinner("🧼 AI Cleaning your dataset..."):
|
| 188 |
cleaned_df, cleaning_msg = ai_clean_dataset(df)
|
| 189 |
|
|
|
|
| 190 |
if cleaning_msg:
|
| 191 |
st.warning(cleaning_msg)
|
| 192 |
-
st.info("💡 Note: For AI cleaning to work best, datasets should ideally be under 2000 rows.")
|
| 193 |
|
| 194 |
st.subheader("✅ Dataset Preview")
|
| 195 |
st.dataframe(cleaned_df.head(), use_container_width=True)
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
numeric_cols = cleaned_df.select_dtypes(include="number").columns.tolist()
|
| 200 |
-
categorical_cols = cleaned_df.select_dtypes(exclude="number").columns.tolist()
|
| 201 |
|
| 202 |
-
viz_type = st.selectbox(
|
| 203 |
-
"Visualization Type",
|
| 204 |
-
["Scatter Plot", "Histogram", "Box Plot", "Correlation Heatmap", "Categorical Count"]
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
if viz_type == "Scatter Plot" and len(numeric_cols) >= 2:
|
| 208 |
-
x = st.selectbox("X-axis", numeric_cols)
|
| 209 |
-
y = st.selectbox("Y-axis", numeric_cols, index=min(1, len(numeric_cols)-1))
|
| 210 |
-
color = st.selectbox("Color", ["None"] + categorical_cols)
|
| 211 |
-
fig = px.scatter(cleaned_df, x=x, y=y, color=None if color=="None" else color)
|
| 212 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 213 |
-
|
| 214 |
-
elif viz_type == "Histogram" and numeric_cols:
|
| 215 |
-
col = st.selectbox("Column", numeric_cols)
|
| 216 |
-
fig = px.histogram(cleaned_df, x=col, nbins=30)
|
| 217 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 218 |
-
|
| 219 |
-
elif viz_type == "Box Plot" and numeric_cols:
|
| 220 |
-
col = st.selectbox("Column", numeric_cols)
|
| 221 |
-
fig = px.box(cleaned_df, y=col)
|
| 222 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 223 |
-
|
| 224 |
-
elif viz_type == "Correlation Heatmap" and len(numeric_cols) > 1:
|
| 225 |
-
corr = cleaned_df[numeric_cols].corr()
|
| 226 |
-
fig = ff.create_annotated_heatmap(
|
| 227 |
-
z=corr.values,
|
| 228 |
-
x=list(corr.columns),
|
| 229 |
-
y=list(corr.index),
|
| 230 |
-
annotation_text=corr.round(2).values,
|
| 231 |
-
showscale=True
|
| 232 |
-
)
|
| 233 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 234 |
-
|
| 235 |
-
elif viz_type == "Categorical Count" and categorical_cols:
|
| 236 |
-
cat = st.selectbox("Category", categorical_cols)
|
| 237 |
-
fig = px.bar(cleaned_df[cat].value_counts().reset_index(), x="index", y=cat)
|
| 238 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 239 |
-
else:
|
| 240 |
-
st.warning("⚠️ Not enough columns for this visualization type.")
|
| 241 |
-
|
| 242 |
-
# ================== AI Analysis ==================
|
| 243 |
st.subheader("💬 Ask AI About Your Data")
|
| 244 |
user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales the most?")
|
| 245 |
if st.button("Analyze with AI", use_container_width=True) and user_query:
|
|
|
|
| 112 |
return df
|
| 113 |
|
| 114 |
def ai_clean_dataset(df: pd.DataFrame) -> (pd.DataFrame, str):
|
| 115 |
+
"""
|
| 116 |
+
Attempts AI cleaning. Returns:
|
| 117 |
+
- DataFrame (cleaned or original)
|
| 118 |
+
- Message explaining status or fallback reason
|
| 119 |
+
"""
|
| 120 |
+
# Skip cleaning if dataset too large
|
| 121 |
+
if len(df) > 50:
|
| 122 |
+
msg = "⚠️ AI cleaning skipped: dataset has more than 50 rows. Using original dataset for analysis."
|
| 123 |
+
return df, msg
|
| 124 |
|
| 125 |
csv_text = df.to_csv(index=False)
|
| 126 |
prompt = f"""
|
|
|
|
| 142 |
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
|
| 143 |
return cleaned_df, ""
|
| 144 |
except Exception as e:
|
| 145 |
+
msg = f"⚠️ AI cleaning failed: {e}. Using original dataset for analysis."
|
| 146 |
+
return df, msg
|
| 147 |
|
| 148 |
# ======================================================
|
| 149 |
# 🧩 DATA ANALYSIS
|
|
|
|
| 193 |
with st.spinner("🧼 AI Cleaning your dataset..."):
|
| 194 |
cleaned_df, cleaning_msg = ai_clean_dataset(df)
|
| 195 |
|
| 196 |
+
# Show warning if cleaning skipped or failed
|
| 197 |
if cleaning_msg:
|
| 198 |
st.warning(cleaning_msg)
|
|
|
|
| 199 |
|
| 200 |
st.subheader("✅ Dataset Preview")
|
| 201 |
st.dataframe(cleaned_df.head(), use_container_width=True)
|
| 202 |
|
| 203 |
+
with st.expander("📋 Dataset Summary", expanded=False):
|
| 204 |
+
st.text(f"Rows: {len(cleaned_df)} | Columns: {len(cleaned_df.columns)}")
|
|
|
|
|
|
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
st.subheader("💬 Ask AI About Your Data")
|
| 207 |
user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales the most?")
|
| 208 |
if st.button("Analyze with AI", use_container_width=True) and user_query:
|