Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +218 -32
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,226 @@
|
|
| 1 |
-
import
|
| 2 |
-
import numpy as np
|
| 3 |
import pandas as pd
|
|
|
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
import os
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
import streamlit as st
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import plotly.figure_factory as ff
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from huggingface_hub import InferenceClient, login
|
| 9 |
+
from io import StringIO
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 11 |
+
|
| 12 |
+
# ======================================================
|
| 13 |
+
# βοΈ APP CONFIGURATION
|
| 14 |
+
# ======================================================
|
| 15 |
+
st.set_page_config(page_title="π Smart Data Analyst Pro", layout="wide")
|
| 16 |
+
st.title("π Smart Data Analyst Pro")
|
| 17 |
+
st.caption("AI that cleans, analyzes, and visualizes your data β powered by Hugging Face Inference API and local open-source models.")
|
| 18 |
+
|
| 19 |
+
# ======================================================
|
| 20 |
+
# π Load Environment Variables
|
| 21 |
+
# ======================================================
|
| 22 |
+
load_dotenv()
|
| 23 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
|
| 24 |
+
if not HF_TOKEN:
|
| 25 |
+
st.error("β Missing HF_TOKEN. Please set it in your .env file.")
|
| 26 |
+
else:
|
| 27 |
+
login(token=HF_TOKEN)
|
| 28 |
+
|
| 29 |
+
# ======================================================
|
| 30 |
+
# π§ MODEL SETTINGS
|
| 31 |
+
# ======================================================
|
| 32 |
+
with st.sidebar:
|
| 33 |
+
st.header("βοΈ Model Settings")
|
| 34 |
+
|
| 35 |
+
CLEANER_MODEL = st.selectbox(
|
| 36 |
+
"Select Cleaner Model:",
|
| 37 |
+
[
|
| 38 |
+
"Qwen/Qwen2.5-Coder-7B-Instruct",
|
| 39 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 40 |
+
"microsoft/Phi-3-mini-4k-instruct"
|
| 41 |
+
],
|
| 42 |
+
index=0
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
ANALYST_MODEL = st.selectbox(
|
| 46 |
+
"Select Analysis Model (Local Open-Source Recommended):",
|
| 47 |
+
[
|
| 48 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 49 |
+
"Qwen/Qwen2.5-Coder-7B-Instruct",
|
| 50 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
| 51 |
+
"mistralai/Mistral-7B-Instruct-v0.3"
|
| 52 |
+
],
|
| 53 |
+
index=0
|
| 54 |
+
)
|
| 55 |
|
| 56 |
+
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
|
| 57 |
+
max_tokens = st.slider("Max Tokens", 128, 2048, 512)
|
| 58 |
+
|
| 59 |
+
# Initialize cleaner client (HF API)
|
| 60 |
+
cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
|
| 61 |
+
|
| 62 |
+
# Initialize local analyst if open-source
|
| 63 |
+
local_analyst = None
|
| 64 |
+
if ANALYST_MODEL in ["meta-llama/Meta-Llama-3-8B-Instruct"]:
|
| 65 |
+
try:
|
| 66 |
+
tokenizer = AutoTokenizer.from_pretrained(ANALYST_MODEL)
|
| 67 |
+
model = AutoModelForCausalLM.from_pretrained(ANALYST_MODEL)
|
| 68 |
+
local_analyst = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
st.warning(f"β οΈ Failed to load local analyst: {e}")
|
| 71 |
+
|
| 72 |
+
# ======================================================
|
| 73 |
+
# π§© DATA CLEANING FUNCTIONS
|
| 74 |
+
# ======================================================
|
| 75 |
+
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
|
| 76 |
+
df = df.copy()
|
| 77 |
+
df.dropna(axis=1, how="all", inplace=True)
|
| 78 |
+
df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
|
| 79 |
+
for col in df.columns:
|
| 80 |
+
if df[col].dtype == "O":
|
| 81 |
+
df[col].fillna(df[col].mode()[0] if not df[col].mode().empty else "Unknown", inplace=True)
|
| 82 |
+
else:
|
| 83 |
+
df[col].fillna(df[col].median(), inplace=True)
|
| 84 |
+
df.drop_duplicates(inplace=True)
|
| 85 |
+
return df
|
| 86 |
+
|
| 87 |
+
def ai_clean_dataset(df: pd.DataFrame) -> pd.DataFrame:
|
| 88 |
+
raw_preview = df.head(5).to_csv(index=False)
|
| 89 |
+
prompt = f"""
|
| 90 |
+
You are a Python data cleaning expert.
|
| 91 |
+
Clean and standardize the dataset dynamically:
|
| 92 |
+
- Handle missing values logically
|
| 93 |
+
- Correct and normalize column names
|
| 94 |
+
- Detect and fix datatype inconsistencies
|
| 95 |
+
- Remove duplicates or invalid rows
|
| 96 |
+
Return ONLY valid CSV text (no Markdown).
|
| 97 |
+
|
| 98 |
+
--- RAW SAMPLE ---
|
| 99 |
+
{raw_preview}
|
| 100 |
"""
|
| 101 |
+
try:
|
| 102 |
+
response = cleaner_client.text_generation(prompt, max_new_tokens=1024, temperature=0.1, return_full_text=False)
|
| 103 |
+
cleaned_str = response.strip()
|
| 104 |
+
except Exception as e:
|
| 105 |
+
st.warning(f"β οΈ AI cleaning failed: {e}")
|
| 106 |
+
return fallback_clean(df)
|
| 107 |
+
|
| 108 |
+
cleaned_str = cleaned_str.replace("```csv","").replace("```","").replace("###","").replace(";",",").strip()
|
| 109 |
+
lines = [l for l in cleaned_str.splitlines() if "," in l]
|
| 110 |
+
cleaned_str = "\n".join(lines)
|
| 111 |
|
| 112 |
+
try:
|
| 113 |
+
cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
|
| 114 |
+
cleaned_df.dropna(axis=1, how="all", inplace=True)
|
| 115 |
+
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
|
| 116 |
+
return cleaned_df
|
| 117 |
+
except Exception as e:
|
| 118 |
+
st.warning(f"β οΈ CSV parse failed: {e}")
|
| 119 |
+
return fallback_clean(df)
|
| 120 |
|
| 121 |
+
def summarize_dataframe(df: pd.DataFrame) -> str:
|
| 122 |
+
lines = [f"Rows: {len(df)} | Columns: {len(df.columns)}", "Column summaries:"]
|
| 123 |
+
for col in df.columns[:10]:
|
| 124 |
+
non_null = int(df[col].notnull().sum())
|
| 125 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
| 126 |
+
mean = df[col].mean()
|
| 127 |
+
median = df[col].median() if non_null > 0 else None
|
| 128 |
+
lines.append(f"- {col}: mean={mean:.3f}, median={median}, non_null={non_null}")
|
| 129 |
+
else:
|
| 130 |
+
top = df[col].value_counts().head(3).to_dict()
|
| 131 |
+
lines.append(f"- {col}: top_values={top}, non_null={non_null}")
|
| 132 |
+
return "\n".join(lines)
|
| 133 |
+
|
| 134 |
+
# ======================================================
|
| 135 |
+
# π§ ANALYSIS FUNCTION
|
| 136 |
+
# ======================================================
|
| 137 |
+
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
|
| 138 |
+
df_summary = summarize_dataframe(df)
|
| 139 |
+
sample = df.head(6).to_csv(index=False)
|
| 140 |
+
prompt = f"""
|
| 141 |
+
You are a data analyst.
|
| 142 |
+
Analyze '{dataset_name}' and answer the question below.
|
| 143 |
+
Base your insights only on the provided data.
|
| 144 |
+
|
| 145 |
+
--- SUMMARY ---
|
| 146 |
+
{df_summary}
|
| 147 |
+
|
| 148 |
+
--- SAMPLE DATA ---
|
| 149 |
+
{sample}
|
| 150 |
+
|
| 151 |
+
--- QUESTION ---
|
| 152 |
+
{user_query}
|
| 153 |
+
|
| 154 |
+
Respond concisely with key insights, numbers, patterns, and recommended steps.
|
| 155 |
"""
|
| 156 |
+
if local_analyst:
|
| 157 |
+
try:
|
| 158 |
+
response = local_analyst(prompt, max_new_tokens=max_tokens, temperature=temperature)
|
| 159 |
+
return response[0]['generated_text']
|
| 160 |
+
except Exception as e:
|
| 161 |
+
return f"β οΈ Local analysis failed: {e}"
|
| 162 |
+
else:
|
| 163 |
+
st.warning("β οΈ Analyst model is not local. Using HF API may require payment.")
|
| 164 |
+
return "Analysis not available for free model."
|
| 165 |
+
|
| 166 |
+
# ======================================================
|
| 167 |
+
# π MAIN APP
|
| 168 |
+
# ======================================================
|
| 169 |
+
uploaded = st.file_uploader("π Upload CSV or Excel file", type=["csv", "xlsx"])
|
| 170 |
+
|
| 171 |
+
if uploaded:
|
| 172 |
+
try:
|
| 173 |
+
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
|
| 174 |
+
except Exception as e:
|
| 175 |
+
st.error(f"β File load failed: {e}")
|
| 176 |
+
st.stop()
|
| 177 |
+
|
| 178 |
+
with st.spinner("π§Ό AI Cleaning your dataset..."):
|
| 179 |
+
cleaned_df = ai_clean_dataset(df)
|
| 180 |
+
|
| 181 |
+
st.subheader("β
Cleaned Dataset Preview")
|
| 182 |
+
st.dataframe(cleaned_df.head(), use_container_width=True)
|
| 183 |
+
|
| 184 |
+
with st.expander("π Cleaning Summary"):
|
| 185 |
+
st.text(summarize_dataframe(cleaned_df))
|
| 186 |
+
|
| 187 |
+
with st.expander("π Quick Visualizations", expanded=True):
|
| 188 |
+
numeric_cols = cleaned_df.select_dtypes(include="number").columns.tolist()
|
| 189 |
+
categorical_cols = cleaned_df.select_dtypes(exclude="number").columns.tolist()
|
| 190 |
+
viz_type = st.selectbox("Visualization Type", ["Scatter Plot", "Histogram", "Box Plot", "Correlation Heatmap", "Categorical Count"])
|
| 191 |
+
|
| 192 |
+
if viz_type == "Scatter Plot" and len(numeric_cols) >= 2:
|
| 193 |
+
x = st.selectbox("X-axis", numeric_cols)
|
| 194 |
+
y = st.selectbox("Y-axis", numeric_cols, index=min(1,len(numeric_cols)-1))
|
| 195 |
+
color = st.selectbox("Color", ["None"] + categorical_cols)
|
| 196 |
+
fig = px.scatter(cleaned_df, x=x, y=y, color=None if color=="None" else color)
|
| 197 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 198 |
+
elif viz_type == "Histogram" and numeric_cols:
|
| 199 |
+
col = st.selectbox("Column", numeric_cols)
|
| 200 |
+
fig = px.histogram(cleaned_df, x=col, nbins=30)
|
| 201 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 202 |
+
elif viz_type == "Box Plot" and numeric_cols:
|
| 203 |
+
col = st.selectbox("Column", numeric_cols)
|
| 204 |
+
fig = px.box(cleaned_df, y=col)
|
| 205 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 206 |
+
elif viz_type == "Correlation Heatmap" and len(numeric_cols) > 1:
|
| 207 |
+
corr = cleaned_df[numeric_cols].corr()
|
| 208 |
+
fig = ff.create_annotated_heatmap(z=corr.values, x=list(corr.columns), y=list(corr.index),
|
| 209 |
+
annotation_text=corr.round(2).values, showscale=True)
|
| 210 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 211 |
+
elif viz_type == "Categorical Count" and categorical_cols:
|
| 212 |
+
cat = st.selectbox("Category", categorical_cols)
|
| 213 |
+
fig = px.bar(cleaned_df[cat].value_counts().reset_index(), x="index", y=cat)
|
| 214 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 215 |
+
else:
|
| 216 |
+
st.warning("β οΈ Not enough columns for this visualization type.")
|
| 217 |
|
| 218 |
+
st.subheader("π¬ Ask AI About Your Data")
|
| 219 |
+
user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales?")
|
| 220 |
+
if st.button("Analyze with AI", use_container_width=True) and user_query:
|
| 221 |
+
with st.spinner("π€ Interpreting data..."):
|
| 222 |
+
result = query_analysis_model(cleaned_df, user_query, uploaded.name)
|
| 223 |
+
st.markdown("### π‘ Insights")
|
| 224 |
+
st.markdown(result)
|
| 225 |
+
else:
|
| 226 |
+
st.info("π₯ Upload a dataset to begin smart analysis.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|