import os import pandas as pd import numpy as np import streamlit as st from dotenv import load_dotenv from huggingface_hub import InferenceClient, login import google.generativeai as genai from io import StringIO import time import requests # ====================================================== # โš™๏ธ APP CONFIGURATION # ====================================================== st.set_page_config(page_title="๐Ÿ“Š Smart Data Analyst Pro", layout="wide") st.title("๐Ÿ“Š Smart Data Analyst Pro (Chat Mode)") st.caption("Chat with your dataset โ€” AI cleans, analyzes, and visualizes data. Hugging Face + Gemini compatible.") # ====================================================== # ๐Ÿ” Load Environment Variables # ====================================================== load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY") GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") if not HF_TOKEN: st.error("โŒ Missing HF_TOKEN. Please set it in your .env file.") else: login(token=HF_TOKEN) if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY) else: st.warning("โš ๏ธ Gemini API key missing. Gemini 2.5 Flash will not work.") # ====================================================== # ๐Ÿง  MODEL SETUP # ====================================================== with st.sidebar: st.header("โš™๏ธ Model Settings") CLEANER_MODEL = st.selectbox( "Select Cleaner Model:", [ "Qwen/Qwen2.5-Coder-14B", "mistralai/Mistral-7B-Instruct-v0.3" ], index=0 ) ANALYST_MODEL = st.selectbox( "Select Analysis Model:", [ "Gemini 2.5 Flash (Google)", "Qwen/Qwen2.5-14B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3", "HuggingFaceH4/zephyr-7b-beta" ], index=0 ) temperature = st.slider("Temperature", 0.0, 1.0, 0.3) max_tokens = st.slider("Max Tokens", 128, 4096, 1024) hf_cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN) hf_analyst_client = None if ANALYST_MODEL != "Gemini 2.5 Flash (Google)": hf_analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN) # ====================================================== # ๐Ÿงฉ SAFE GENERATION FUNCTION # ====================================================== def safe_hf_generate(client, prompt, temperature=0.3, max_tokens=512, retries=2): """Try text generation, with retry + fallback on service errors.""" for attempt in range(retries + 1): try: resp = client.text_generation( prompt, temperature=temperature, max_new_tokens=max_tokens, return_full_text=False, ) return resp.strip() except Exception as e: err = str(e) # ๐Ÿฉน FIX: Handle common server overloads gracefully if "503" in err or "Service Temporarily Unavailable" in err: time.sleep(2) if attempt < retries: continue # retry else: return "โš ๏ธ The Hugging Face model is temporarily unavailable. Please try again or switch to Gemini." elif "Supported task: conversational" in err: chat_resp = client.chat_completion( messages=[{"role": "user", "content": prompt}], max_tokens=max_tokens, temperature=temperature, ) return chat_resp["choices"][0]["message"]["content"].strip() else: raise e return "โš ๏ธ Failed after retries." # ====================================================== # ๐Ÿงฉ DATA CLEANING # ====================================================== def fallback_clean(df: pd.DataFrame) -> pd.DataFrame: df = df.copy() df.dropna(axis=1, how="all", inplace=True) df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns] for col in df.columns: if df[col].dtype == "O": if not df[col].mode().empty: df[col].fillna(df[col].mode()[0], inplace=True) else: df[col].fillna("Unknown", inplace=True) else: df[col].fillna(df[col].median(), inplace=True) df.drop_duplicates(inplace=True) return df def ai_clean_dataset(df: pd.DataFrame) -> (pd.DataFrame, str): if len(df) > 50: return df, "โš ๏ธ AI cleaning skipped: dataset has more than 50 rows." csv_text = df.to_csv(index=False) prompt = f""" You are a professional data cleaning assistant. Clean and standardize the dataset below dynamically: 1. Handle missing values 2. Fix column name inconsistencies 3. Convert data types (dates, numbers, categories) 4. Remove irrelevant or duplicate rows Return ONLY a valid CSV text (no markdown, no explanations). Dataset: {csv_text} """ try: cleaned_str = safe_hf_generate(hf_cleaner_client, prompt, temperature=0.1, max_tokens=4096) cleaned_str = cleaned_str.replace("```csv", "").replace("```", "").replace("###", "").strip() cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip") cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns] return cleaned_df, "โœ… AI cleaning completed successfully." except Exception as e: return df, f"โš ๏ธ AI cleaning failed: {str(e)}" # ====================================================== # ๐Ÿงฉ DATA SUMMARY (Token-efficient) # ====================================================== def summarize_for_analysis(df: pd.DataFrame, sample_rows=10) -> str: summary = [f"Rows: {len(df)}, Columns: {len(df.columns)}"] for col in df.columns: non_null = int(df[col].notnull().sum()) if pd.api.types.is_numeric_dtype(df[col]): desc = df[col].describe().to_dict() summary.append(f"- {col}: mean={desc.get('mean', np.nan):.2f}, median={df[col].median():.2f}, non_null={non_null}") else: top = df[col].value_counts().head(3).to_dict() summary.append(f"- {col}: top_values={top}, non_null={non_null}") sample = df.head(sample_rows).to_csv(index=False) summary.append("--- Sample Data ---") summary.append(sample) return "\n".join(summary) # ====================================================== # ๐Ÿง  ANALYSIS FUNCTION # ====================================================== def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str: prompt_summary = summarize_for_analysis(df) prompt = f""" You are a professional data analyst. Analyze the dataset '{dataset_name}' and answer the user's question. --- DATA SUMMARY --- {prompt_summary} --- USER QUESTION --- {user_query} Respond with: 1. Key insights and patterns 2. Quantitative findings 3. Notable relationships or anomalies 4. Data-driven recommendations """ try: if ANALYST_MODEL == "Gemini 2.5 Flash (Google)": response = genai.GenerativeModel("gemini-2.5-flash").generate_content( prompt, generation_config={ "temperature": temperature, "max_output_tokens": max_tokens } ) return response.text if hasattr(response, "text") else "No valid text response." else: # ๐Ÿฉน FIX: wrap in retry-aware generator result = safe_hf_generate(hf_analyst_client, prompt, temperature=temperature, max_tokens=max_tokens) # fallback to Gemini if Hugging Face failed entirely if "temporarily unavailable" in result.lower() and GEMINI_API_KEY: alt = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt) return f"๐Ÿ”„ Fallback to Gemini:\n\n{alt.text}" return result except Exception as e: # ๐Ÿฉน FIX: fallback if server rejects or 5xx if "503" in str(e) and GEMINI_API_KEY: response = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt) return f"๐Ÿ”„ Fallback to Gemini due to 503 error:\n\n{response.text}" return f"โš ๏ธ Analysis failed: {str(e)}" # ====================================================== # ๐Ÿš€ MAIN CHATBOT LOGIC # ====================================================== uploaded = st.file_uploader("๐Ÿ“Ž Upload CSV or Excel file", type=["csv", "xlsx"]) if "messages" not in st.session_state: st.session_state.messages = [] if uploaded: df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded) with st.spinner("๐Ÿงผ Cleaning your dataset..."): cleaned_df, cleaning_status = ai_clean_dataset(df) st.subheader("โœ… Cleaning Status") st.info(cleaning_status) st.subheader("๐Ÿ“Š Dataset Preview") st.dataframe(cleaned_df.head(), use_container_width=True) st.subheader("๐Ÿ’ฌ Chat with Your Dataset") for msg in st.session_state.messages: with st.chat_message(msg["role"]): st.markdown(msg["content"]) if user_query := st.chat_input("Ask something about your dataset..."): st.session_state.messages.append({"role": "user", "content": user_query}) with st.chat_message("user"): st.markdown(user_query) with st.chat_message("assistant"): with st.spinner("๐Ÿค– Analyzing..."): result = query_analysis_model(cleaned_df, user_query, uploaded.name) st.markdown(result) st.session_state.messages.append({"role": "assistant", "content": result}) else: st.info("๐Ÿ“ฅ Upload a dataset to begin chatting with your AI analyst.")