Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
from PIL import Image
|
| 4 |
-
import
|
| 5 |
|
| 6 |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 7 |
|
|
@@ -16,7 +16,13 @@ if st.button("Take an image from camera"):
|
|
| 16 |
cap = cv2.VideoCapture(0)
|
| 17 |
ret, frame = cap.read()
|
| 18 |
if ret:
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
file_name = 'webcam_image.jpg'
|
| 21 |
|
| 22 |
# Add a text bar to add a title
|
|
@@ -28,11 +34,17 @@ image_description = st.text_input("Image Description", value="(Optional)")
|
|
| 28 |
if file_name is not None:
|
| 29 |
col1, col2 = st.columns(2)
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
col1.image(image, use_column_width=True)
|
| 33 |
predictions = pipeline(image)
|
| 34 |
|
| 35 |
col2.header("Probabilities")
|
| 36 |
for p in predictions:
|
| 37 |
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|
| 38 |
-
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
from PIL import Image
|
| 4 |
+
import base64
|
| 5 |
|
| 6 |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 7 |
|
|
|
|
| 16 |
cap = cv2.VideoCapture(0)
|
| 17 |
ret, frame = cap.read()
|
| 18 |
if ret:
|
| 19 |
+
# Encode the webcam image as a Base64 string
|
| 20 |
+
img_encoded = base64.b64encode(cv2.imencode('.jpg', frame)[1]).decode('utf-8')
|
| 21 |
+
|
| 22 |
+
# Pass the Base64 encoded image to the pipeline function
|
| 23 |
+
predictions = pipeline(Image.open('data:image/jpeg;base64,' + img_encoded))
|
| 24 |
+
|
| 25 |
+
# Replace file_name with the encoded image
|
| 26 |
file_name = 'webcam_image.jpg'
|
| 27 |
|
| 28 |
# Add a text bar to add a title
|
|
|
|
| 34 |
if file_name is not None:
|
| 35 |
col1, col2 = st.columns(2)
|
| 36 |
|
| 37 |
+
# Check if the file is a webcam image
|
| 38 |
+
if file_name == 'webcam_image.jpg':
|
| 39 |
+
# Use the Base64 encoded image
|
| 40 |
+
image = Image.open('data:image/jpeg;base64,' + img_encoded)
|
| 41 |
+
else:
|
| 42 |
+
# Open the uploaded image
|
| 43 |
+
image = Image.open(file_name)
|
| 44 |
+
|
| 45 |
col1.image(image, use_column_width=True)
|
| 46 |
predictions = pipeline(image)
|
| 47 |
|
| 48 |
col2.header("Probabilities")
|
| 49 |
for p in predictions:
|
| 50 |
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|
|
|