Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -186,6 +186,61 @@ def infer(sample_audio_path, target_text, progress=gr.Progress()):
|
|
| 186 |
|
| 187 |
return (16000, gen_wav[0, 0, :].cpu().numpy())
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
with gr.Blocks() as app_tts:
|
| 190 |
gr.Markdown("# Zero Shot Voice Clone TTS")
|
| 191 |
|
|
@@ -229,17 +284,41 @@ with gr.Blocks() as app_credits:
|
|
| 229 |
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
| 230 |
""")
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
with gr.Blocks() as app:
|
| 233 |
gr.Markdown(
|
| 234 |
"""
|
| 235 |
# Llasa 1b Multilingual TTS
|
| 236 |
|
| 237 |
-
This is a local web UI for Llasa 1b multilingual
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
| 240 |
"""
|
| 241 |
)
|
| 242 |
-
gr.TabbedInterface(
|
| 243 |
-
|
|
|
|
|
|
|
| 244 |
|
| 245 |
-
app.launch(ssr_mode=False
|
|
|
|
| 186 |
|
| 187 |
return (16000, gen_wav[0, 0, :].cpu().numpy())
|
| 188 |
|
| 189 |
+
def text_only_infer(target_text, progress=gr.Progress()):
|
| 190 |
+
"""Function to generate speech directly from text without a reference voice"""
|
| 191 |
+
if len(target_text) == 0:
|
| 192 |
+
return None
|
| 193 |
+
elif len(target_text) > 300:
|
| 194 |
+
gr.Warning("Text is too long. Please keep it under 300 characters.")
|
| 195 |
+
target_text = target_text[:300]
|
| 196 |
+
|
| 197 |
+
progress(0.2, 'Generating speech...')
|
| 198 |
+
|
| 199 |
+
with torch.no_grad():
|
| 200 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{target_text}<|TEXT_UNDERSTANDING_END|>"
|
| 201 |
+
|
| 202 |
+
# Tokenize the text
|
| 203 |
+
chat = [
|
| 204 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
| 205 |
+
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
|
| 206 |
+
]
|
| 207 |
+
|
| 208 |
+
input_ids = tokenizer.apply_chat_template(
|
| 209 |
+
chat,
|
| 210 |
+
tokenize=True,
|
| 211 |
+
return_tensors='pt',
|
| 212 |
+
continue_final_message=True
|
| 213 |
+
)
|
| 214 |
+
input_ids = input_ids.to('cuda')
|
| 215 |
+
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
| 216 |
+
|
| 217 |
+
# Generate the speech autoregressively
|
| 218 |
+
outputs = model.generate(
|
| 219 |
+
input_ids,
|
| 220 |
+
max_length=2048,
|
| 221 |
+
eos_token_id=speech_end_id,
|
| 222 |
+
do_sample=True,
|
| 223 |
+
top_p=1,
|
| 224 |
+
temperature=0.8
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
progress(0.6, 'Processing audio...')
|
| 228 |
+
|
| 229 |
+
# Extract the speech tokens
|
| 230 |
+
generated_ids = outputs[0][input_ids.shape[1]:-1]
|
| 231 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 232 |
+
|
| 233 |
+
# Convert token <|s_23456|> to int 23456
|
| 234 |
+
speech_tokens = extract_speech_ids(speech_tokens)
|
| 235 |
+
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
|
| 236 |
+
|
| 237 |
+
# Decode the speech tokens to speech waveform
|
| 238 |
+
gen_wav = Codec_model.decode_code(speech_tokens)
|
| 239 |
+
|
| 240 |
+
progress(1, 'Done!')
|
| 241 |
+
|
| 242 |
+
return (16000, gen_wav[0, 0, :].cpu().numpy())
|
| 243 |
+
|
| 244 |
with gr.Blocks() as app_tts:
|
| 245 |
gr.Markdown("# Zero Shot Voice Clone TTS")
|
| 246 |
|
|
|
|
| 284 |
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
| 285 |
""")
|
| 286 |
|
| 287 |
+
with gr.Blocks() as app_direct_tts:
|
| 288 |
+
gr.Markdown("# Direct Text-to-Speech")
|
| 289 |
+
gr.Markdown("Generate speech directly from text without voice cloning")
|
| 290 |
+
|
| 291 |
+
text_input = gr.Textbox(
|
| 292 |
+
label="Text to Generate",
|
| 293 |
+
lines=10,
|
| 294 |
+
placeholder="Enter the text you want to convert to speech..."
|
| 295 |
+
)
|
| 296 |
+
generate_btn = gr.Button("Generate Speech", variant="primary")
|
| 297 |
+
audio_output = gr.Audio(label="Generated Audio")
|
| 298 |
+
|
| 299 |
+
generate_btn.click(
|
| 300 |
+
text_only_infer,
|
| 301 |
+
inputs=[text_input],
|
| 302 |
+
outputs=[audio_output],
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
with gr.Blocks() as app:
|
| 306 |
gr.Markdown(
|
| 307 |
"""
|
| 308 |
# Llasa 1b Multilingual TTS
|
| 309 |
|
| 310 |
+
This is a local web UI for Llasa 1b multilingual TTS that supports:
|
| 311 |
+
- Zero Shot Voice Cloning
|
| 312 |
+
- Direct Text-to-Speech
|
| 313 |
+
|
| 314 |
+
Supports multiple languages including English, Chinese, French, German, Dutch, Spanish, Italian, Portuguese, Polish, Japanese and Korean!
|
| 315 |
|
| 316 |
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
| 317 |
"""
|
| 318 |
)
|
| 319 |
+
gr.TabbedInterface(
|
| 320 |
+
[app_direct_tts, app_tts],
|
| 321 |
+
["Direct TTS", "Voice Cloning"]
|
| 322 |
+
)
|
| 323 |
|
| 324 |
+
app.launch(ssr_mode=False)
|