Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,970 Bytes
7e6946d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import pickle
from multiprocessing.shared_memory import SharedMemory
from multiprocessing.synchronize import Event
import torch
import torch.distributed as dist
from flashcosyvoice.config import Config
from flashcosyvoice.engine.sequence import Sequence
from flashcosyvoice.modules.qwen2 import Qwen2ForCausalLM
from flashcosyvoice.modules.sampler import RasSampler, Sampler
from flashcosyvoice.utils.context import (get_context, reset_context,
set_context)
from flashcosyvoice.utils.loader import load_model
class ModelRunner:
def __init__(self, config: Config, rank: int, event: Event | list[Event]):
self.config = config
hf_config = config.hf_config
self.block_size = config.kvcache_block_size
self.enforce_eager = config.enforce_eager
self.world_size = config.tensor_parallel_size
self.rank = rank
self.event = event
# TODO(xcsong): support tp > 1
if self.world_size > 1:
dist.init_process_group("nccl", "tcp://localhost:2333", world_size=self.world_size, rank=rank)
torch.cuda.set_device(rank)
default_dtype = torch.get_default_dtype()
torch.set_default_dtype(hf_config.torch_dtype)
torch.set_default_device("cuda")
self.model = Qwen2ForCausalLM(hf_config)
load_model(self.model, config.model, hf_config)
self.sampler = Sampler()
self.ras_sampler = RasSampler()
self.warmup_model()
self.allocate_kv_cache()
if not self.enforce_eager:
self.capture_cudagraph()
torch.set_default_device("cpu")
torch.set_default_dtype(default_dtype)
if self.world_size > 1:
if rank == 0:
self.shm = SharedMemory(name="flashcosyvoice", create=True, size=2**20)
dist.barrier()
else:
dist.barrier()
self.shm = SharedMemory(name="flashcosyvoice")
self.loop()
def exit(self):
if self.world_size > 1:
self.shm.close()
dist.barrier()
if self.rank == 0:
self.shm.unlink()
if not self.enforce_eager:
del self.graphs, self.graph_pool
torch.cuda.synchronize()
if self.world_size > 1:
dist.destroy_process_group()
def loop(self):
while True:
method_name, args = self.read_shm()
self.call(method_name, *args)
if method_name == "exit":
break
def read_shm(self):
assert self.world_size > 1 and self.rank
self.event.wait()
n = int.from_bytes(self.shm.buf[0:4], "little")
method_name, *args = pickle.loads(self.shm.buf[4:n + 4])
self.event.clear()
return method_name, args
def write_shm(self, method_name, *args):
assert self.world_size > 1 and not self.rank
data = pickle.dumps([method_name, *args])
n = len(data)
self.shm.buf[0:4] = n.to_bytes(4, "little")
self.shm.buf[4:n + 4] = data
for event in self.event:
event.set()
def call(self, method_name, *args):
if self.world_size > 1 and self.rank == 0:
self.write_shm(method_name, *args)
method = getattr(self, method_name, None)
return method(*args)
def warmup_model(self):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
max_num_batched_tokens, max_model_len = self.config.max_num_batched_tokens, self.config.max_model_len
num_seqs = min(max_num_batched_tokens // max_model_len, self.config.max_num_seqs)
seqs = [Sequence([0] * max_model_len) for _ in range(num_seqs)]
self.run(seqs, True)
torch.cuda.empty_cache()
def allocate_kv_cache(self):
config = self.config
hf_config = config.hf_config
free, total = torch.cuda.mem_get_info()
used = total - free
peak = torch.cuda.memory_stats()["allocated_bytes.all.peak"]
current = torch.cuda.memory_stats()["allocated_bytes.all.current"]
num_kv_heads = hf_config.num_key_value_heads // self.world_size
head_dim = getattr(hf_config, "head_dim", hf_config.hidden_size // hf_config.num_attention_heads)
block_bytes = 2 * hf_config.num_hidden_layers * self.block_size * num_kv_heads * head_dim * hf_config.torch_dtype.itemsize
config.num_kvcache_blocks = int(total * config.gpu_memory_utilization - used - peak + current) // block_bytes
assert config.num_kvcache_blocks > 0, "try to **increase** gpu_memory_utilization"
self.kv_cache = torch.zeros(2, hf_config.num_hidden_layers, config.num_kvcache_blocks, self.block_size, num_kv_heads, head_dim)
layer_id = 0
for module in self.model.modules():
if hasattr(module, "k_cache") and hasattr(module, "v_cache"):
module.k_cache = self.kv_cache[0, layer_id]
module.v_cache = self.kv_cache[1, layer_id]
layer_id += 1
def prepare_block_tables(self, seqs: list[Sequence]):
max_len = max(len(seq.block_table) for seq in seqs)
block_tables = [seq.block_table + [-1] * (max_len - len(seq.block_table)) for seq in seqs]
block_tables = torch.tensor(block_tables, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
return block_tables
def prepare_prefill(self, seqs: list[Sequence]):
input_ids = []
positions = []
cu_seqlens_q = [0]
cu_seqlens_k = [0]
max_seqlen_q = 0
max_seqlen_k = 0
slot_mapping = []
block_tables = None
for seq in seqs:
seqlen = len(seq)
input_ids.extend(seq[seq.num_cached_tokens:])
positions.extend(list(range(seq.num_cached_tokens, seqlen)))
seqlen_q = seqlen - seq.num_cached_tokens
seqlen_k = seqlen
cu_seqlens_q.append(cu_seqlens_q[-1] + seqlen_q)
cu_seqlens_k.append(cu_seqlens_k[-1] + seqlen_k)
max_seqlen_q = max(seqlen_q, max_seqlen_q)
max_seqlen_k = max(seqlen_k, max_seqlen_k)
if not seq.block_table:
continue
for i in range(seq.num_cached_blocks, seq.num_blocks):
start = seq.block_table[i] * self.block_size
if i != seq.num_blocks - 1:
end = start + self.block_size
else:
end = start + seq.last_block_num_tokens
slot_mapping.extend(list(range(start, end)))
if cu_seqlens_k[-1] > cu_seqlens_q[-1]: # prefix cache
block_tables = self.prepare_block_tables(seqs)
input_ids = torch.tensor(input_ids, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
positions = torch.tensor(positions, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
cu_seqlens_q = torch.tensor(cu_seqlens_q, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
cu_seqlens_k = torch.tensor(cu_seqlens_k, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
set_context(True, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, slot_mapping, None, block_tables)
return input_ids, positions
def prepare_decode(self, seqs: list[Sequence]):
input_ids = []
positions = []
slot_mapping = []
context_lens = []
for seq in seqs:
input_ids.append(seq.last_token)
positions.append(len(seq))
context_lens.append(len(seq))
slot_mapping.append(seq.block_table[-1] * self.block_size + seq.last_block_num_tokens - 1)
input_ids = torch.tensor(input_ids, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
positions = torch.tensor(positions, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
context_lens = torch.tensor(context_lens, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
block_tables = self.prepare_block_tables(seqs)
set_context(False, slot_mapping=slot_mapping, context_lens=context_lens, block_tables=block_tables)
return input_ids, positions
def prepare_sample(self, seqs: list[Sequence]):
temperatures = []
top_ks = []
win_sizes = []
tau_rs = []
top_ps = []
min_tokens_list = []
use_ras_list = []
for seq in seqs:
temperatures.append(seq.temperature)
top_ks.append(seq.top_k)
win_sizes.append(seq.win_size)
tau_rs.append(seq.tau_r)
top_ps.append(seq.top_p)
min_tokens_list.append(seq.min_tokens)
use_ras_list.append(seq.use_ras)
temperatures_tensor = torch.tensor(temperatures, dtype=torch.float32, pin_memory=True).cuda(non_blocking=True)
# check all items equal
assert all(item == temperatures[0] for item in temperatures)
assert all(item == top_ks[0] for item in top_ks)
assert all(item == win_sizes[0] for item in win_sizes)
assert all(item == tau_rs[0] for item in tau_rs)
assert all(item == top_ps[0] for item in top_ps)
assert all(item == use_ras_list[0] for item in use_ras_list)
return {
'temperatures': temperatures_tensor,
'top_k': top_ks[0],
'win_size': win_sizes[0],
'tau_r': tau_rs[0],
'top_p': top_ps[0],
'eos_token': self.config.eos,
'min_tokens': min_tokens_list,
'use_ras': use_ras_list[0]
}
@torch.inference_mode()
def run_model(self, input_ids: torch.Tensor, positions: torch.Tensor, is_prefill: bool):
if is_prefill or self.enforce_eager or input_ids.size(0) > 512:
return self.model.compute_logits(self.model(input_ids, positions))
else:
bs = input_ids.size(0)
context = get_context()
graph = self.graphs[next(x for x in self.graph_bs if x >= bs)]
graph_vars = self.graph_vars
for k, v in graph_vars.items():
if k != "outputs":
v.zero_()
graph_vars["input_ids"][:bs] = input_ids
graph_vars["positions"][:bs] = positions
graph_vars["slot_mapping"][:bs] = context.slot_mapping
graph_vars["context_lens"][:bs] = context.context_lens
graph_vars["block_tables"][:bs, :context.block_tables.size(1)] = context.block_tables
graph.replay()
return self.model.compute_logits(graph_vars["outputs"][:bs])
def run(self, seqs: list[Sequence], is_prefill: bool) -> list[int]:
input_ids, positions = self.prepare_prefill(seqs) if is_prefill else self.prepare_decode(seqs)
if self.rank == 0 or self.world_size == 1:
sample_params = self.prepare_sample(seqs)
logits = self.run_model(input_ids, positions, is_prefill)
if sample_params['use_ras']:
# Prepare decoded tokens list for RasSampler
decoded_tokens_list = [seq.completion_token_ids for seq in seqs]
# Pass all parameters as lists to RasSampler
token_ids = self.ras_sampler(
logits,
decoded_tokens_list,
win_size=sample_params['win_size'],
tau_r=sample_params['tau_r'],
top_p=sample_params['top_p'],
top_k=sample_params['top_k'],
eos_token=sample_params['eos_token'],
min_tokens=sample_params['min_tokens']
).tolist()
else:
# Use the default sampler with list form of top_ks
token_ids = self.sampler(logits, sample_params['temperatures'], sample_params['top_k']).tolist()
else:
logits = self.run_model(input_ids, positions, is_prefill)
token_ids = None
reset_context()
return token_ids
@torch.inference_mode()
def capture_cudagraph(self):
config = self.config
hf_config = config.hf_config
max_bs = min(self.config.max_num_seqs, 512)
max_num_blocks = (config.max_model_len + self.block_size - 1) // self.block_size
input_ids = torch.zeros(max_bs, dtype=torch.int64)
positions = torch.zeros(max_bs, dtype=torch.int64)
slot_mapping = torch.zeros(max_bs, dtype=torch.int32)
context_lens = torch.zeros(max_bs, dtype=torch.int32)
block_tables = torch.zeros(max_bs, max_num_blocks, dtype=torch.int32)
outputs = torch.zeros(max_bs, hf_config.hidden_size)
self.graph_bs = [1, 2, 4, 8] + list(range(16, max_bs + 1, 16))
self.graphs = {}
self.graph_pool = None
for bs in reversed(self.graph_bs):
graph = torch.cuda.CUDAGraph()
set_context(False, slot_mapping=slot_mapping[:bs], context_lens=context_lens[:bs], block_tables=block_tables[:bs])
outputs[:bs] = self.model(input_ids[:bs], positions[:bs]) # warmup
with torch.cuda.graph(graph, self.graph_pool):
outputs[:bs] = self.model(input_ids[:bs], positions[:bs]) # capture
if self.graph_pool is None:
self.graph_pool = graph.pool()
self.graphs[bs] = graph
torch.cuda.synchronize()
reset_context()
self.graph_vars = dict(
input_ids=input_ids,
positions=positions,
slot_mapping=slot_mapping,
context_lens=context_lens,
block_tables=block_tables,
outputs=outputs,
)
|