File size: 13,970 Bytes
7e6946d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import pickle
from multiprocessing.shared_memory import SharedMemory
from multiprocessing.synchronize import Event

import torch
import torch.distributed as dist

from flashcosyvoice.config import Config
from flashcosyvoice.engine.sequence import Sequence
from flashcosyvoice.modules.qwen2 import Qwen2ForCausalLM
from flashcosyvoice.modules.sampler import RasSampler, Sampler
from flashcosyvoice.utils.context import (get_context, reset_context,
                                          set_context)
from flashcosyvoice.utils.loader import load_model


class ModelRunner:

    def __init__(self, config: Config, rank: int, event: Event | list[Event]):
        self.config = config
        hf_config = config.hf_config
        self.block_size = config.kvcache_block_size
        self.enforce_eager = config.enforce_eager
        self.world_size = config.tensor_parallel_size
        self.rank = rank
        self.event = event

        # TODO(xcsong): support tp > 1
        if self.world_size > 1:
            dist.init_process_group("nccl", "tcp://localhost:2333", world_size=self.world_size, rank=rank)
        torch.cuda.set_device(rank)
        default_dtype = torch.get_default_dtype()
        torch.set_default_dtype(hf_config.torch_dtype)
        torch.set_default_device("cuda")
        self.model = Qwen2ForCausalLM(hf_config)
        load_model(self.model, config.model, hf_config)
        self.sampler = Sampler()
        self.ras_sampler = RasSampler()
        self.warmup_model()
        self.allocate_kv_cache()
        if not self.enforce_eager:
            self.capture_cudagraph()
        torch.set_default_device("cpu")
        torch.set_default_dtype(default_dtype)

        if self.world_size > 1:
            if rank == 0:
                self.shm = SharedMemory(name="flashcosyvoice", create=True, size=2**20)
                dist.barrier()
            else:
                dist.barrier()
                self.shm = SharedMemory(name="flashcosyvoice")
                self.loop()

    def exit(self):
        if self.world_size > 1:
            self.shm.close()
            dist.barrier()
            if self.rank == 0:
                self.shm.unlink()
        if not self.enforce_eager:
            del self.graphs, self.graph_pool
        torch.cuda.synchronize()
        if self.world_size > 1:
            dist.destroy_process_group()

    def loop(self):
        while True:
            method_name, args = self.read_shm()
            self.call(method_name, *args)
            if method_name == "exit":
                break

    def read_shm(self):
        assert self.world_size > 1 and self.rank
        self.event.wait()
        n = int.from_bytes(self.shm.buf[0:4], "little")
        method_name, *args = pickle.loads(self.shm.buf[4:n + 4])
        self.event.clear()
        return method_name, args

    def write_shm(self, method_name, *args):
        assert self.world_size > 1 and not self.rank
        data = pickle.dumps([method_name, *args])
        n = len(data)
        self.shm.buf[0:4] = n.to_bytes(4, "little")
        self.shm.buf[4:n + 4] = data
        for event in self.event:
            event.set()

    def call(self, method_name, *args):
        if self.world_size > 1 and self.rank == 0:
            self.write_shm(method_name, *args)
        method = getattr(self, method_name, None)
        return method(*args)

    def warmup_model(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        max_num_batched_tokens, max_model_len = self.config.max_num_batched_tokens, self.config.max_model_len
        num_seqs = min(max_num_batched_tokens // max_model_len, self.config.max_num_seqs)
        seqs = [Sequence([0] * max_model_len) for _ in range(num_seqs)]
        self.run(seqs, True)
        torch.cuda.empty_cache()

    def allocate_kv_cache(self):
        config = self.config
        hf_config = config.hf_config
        free, total = torch.cuda.mem_get_info()
        used = total - free
        peak = torch.cuda.memory_stats()["allocated_bytes.all.peak"]
        current = torch.cuda.memory_stats()["allocated_bytes.all.current"]
        num_kv_heads = hf_config.num_key_value_heads // self.world_size
        head_dim = getattr(hf_config, "head_dim", hf_config.hidden_size // hf_config.num_attention_heads)
        block_bytes = 2 * hf_config.num_hidden_layers * self.block_size * num_kv_heads * head_dim * hf_config.torch_dtype.itemsize
        config.num_kvcache_blocks = int(total * config.gpu_memory_utilization - used - peak + current) // block_bytes
        assert config.num_kvcache_blocks > 0, "try to **increase** gpu_memory_utilization"
        self.kv_cache = torch.zeros(2, hf_config.num_hidden_layers, config.num_kvcache_blocks, self.block_size, num_kv_heads, head_dim)
        layer_id = 0
        for module in self.model.modules():
            if hasattr(module, "k_cache") and hasattr(module, "v_cache"):
                module.k_cache = self.kv_cache[0, layer_id]
                module.v_cache = self.kv_cache[1, layer_id]
                layer_id += 1

    def prepare_block_tables(self, seqs: list[Sequence]):
        max_len = max(len(seq.block_table) for seq in seqs)
        block_tables = [seq.block_table + [-1] * (max_len - len(seq.block_table)) for seq in seqs]
        block_tables = torch.tensor(block_tables, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
        return block_tables

    def prepare_prefill(self, seqs: list[Sequence]):
        input_ids = []
        positions = []
        cu_seqlens_q = [0]
        cu_seqlens_k = [0]
        max_seqlen_q = 0
        max_seqlen_k = 0
        slot_mapping = []
        block_tables = None
        for seq in seqs:
            seqlen = len(seq)
            input_ids.extend(seq[seq.num_cached_tokens:])
            positions.extend(list(range(seq.num_cached_tokens, seqlen)))
            seqlen_q = seqlen - seq.num_cached_tokens
            seqlen_k = seqlen
            cu_seqlens_q.append(cu_seqlens_q[-1] + seqlen_q)
            cu_seqlens_k.append(cu_seqlens_k[-1] + seqlen_k)
            max_seqlen_q = max(seqlen_q, max_seqlen_q)
            max_seqlen_k = max(seqlen_k, max_seqlen_k)
            if not seq.block_table:
                continue
            for i in range(seq.num_cached_blocks, seq.num_blocks):
                start = seq.block_table[i] * self.block_size
                if i != seq.num_blocks - 1:
                    end = start + self.block_size
                else:
                    end = start + seq.last_block_num_tokens
                slot_mapping.extend(list(range(start, end)))
        if cu_seqlens_k[-1] > cu_seqlens_q[-1]:    # prefix cache
            block_tables = self.prepare_block_tables(seqs)
        input_ids = torch.tensor(input_ids, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
        positions = torch.tensor(positions, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
        cu_seqlens_q = torch.tensor(cu_seqlens_q, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
        cu_seqlens_k = torch.tensor(cu_seqlens_k, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
        slot_mapping = torch.tensor(slot_mapping, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
        set_context(True, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, slot_mapping, None, block_tables)
        return input_ids, positions

    def prepare_decode(self, seqs: list[Sequence]):
        input_ids = []
        positions = []
        slot_mapping = []
        context_lens = []
        for seq in seqs:
            input_ids.append(seq.last_token)
            positions.append(len(seq))
            context_lens.append(len(seq))
            slot_mapping.append(seq.block_table[-1] * self.block_size + seq.last_block_num_tokens - 1)
        input_ids = torch.tensor(input_ids, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
        positions = torch.tensor(positions, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
        slot_mapping = torch.tensor(slot_mapping, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
        context_lens = torch.tensor(context_lens, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
        block_tables = self.prepare_block_tables(seqs)
        set_context(False, slot_mapping=slot_mapping, context_lens=context_lens, block_tables=block_tables)
        return input_ids, positions

    def prepare_sample(self, seqs: list[Sequence]):
        temperatures = []
        top_ks = []
        win_sizes = []
        tau_rs = []
        top_ps = []
        min_tokens_list = []
        use_ras_list = []

        for seq in seqs:
            temperatures.append(seq.temperature)
            top_ks.append(seq.top_k)
            win_sizes.append(seq.win_size)
            tau_rs.append(seq.tau_r)
            top_ps.append(seq.top_p)
            min_tokens_list.append(seq.min_tokens)
            use_ras_list.append(seq.use_ras)

        temperatures_tensor = torch.tensor(temperatures, dtype=torch.float32, pin_memory=True).cuda(non_blocking=True)
        # check all items equal
        assert all(item == temperatures[0] for item in temperatures)
        assert all(item == top_ks[0] for item in top_ks)
        assert all(item == win_sizes[0] for item in win_sizes)
        assert all(item == tau_rs[0] for item in tau_rs)
        assert all(item == top_ps[0] for item in top_ps)
        assert all(item == use_ras_list[0] for item in use_ras_list)

        return {
            'temperatures': temperatures_tensor,
            'top_k': top_ks[0],
            'win_size': win_sizes[0],
            'tau_r': tau_rs[0],
            'top_p': top_ps[0],
            'eos_token': self.config.eos,
            'min_tokens': min_tokens_list,
            'use_ras': use_ras_list[0]
        }

    @torch.inference_mode()
    def run_model(self, input_ids: torch.Tensor, positions: torch.Tensor, is_prefill: bool):
        if is_prefill or self.enforce_eager or input_ids.size(0) > 512:
            return self.model.compute_logits(self.model(input_ids, positions))
        else:
            bs = input_ids.size(0)
            context = get_context()
            graph = self.graphs[next(x for x in self.graph_bs if x >= bs)]
            graph_vars = self.graph_vars
            for k, v in graph_vars.items():
                if k != "outputs":
                    v.zero_()
            graph_vars["input_ids"][:bs] = input_ids
            graph_vars["positions"][:bs] = positions
            graph_vars["slot_mapping"][:bs] = context.slot_mapping
            graph_vars["context_lens"][:bs] = context.context_lens
            graph_vars["block_tables"][:bs, :context.block_tables.size(1)] = context.block_tables
            graph.replay()
            return self.model.compute_logits(graph_vars["outputs"][:bs])

    def run(self, seqs: list[Sequence], is_prefill: bool) -> list[int]:
        input_ids, positions = self.prepare_prefill(seqs) if is_prefill else self.prepare_decode(seqs)
        if self.rank == 0 or self.world_size == 1:
            sample_params = self.prepare_sample(seqs)
            logits = self.run_model(input_ids, positions, is_prefill)

            if sample_params['use_ras']:
                # Prepare decoded tokens list for RasSampler
                decoded_tokens_list = [seq.completion_token_ids for seq in seqs]
                # Pass all parameters as lists to RasSampler
                token_ids = self.ras_sampler(
                    logits,
                    decoded_tokens_list,
                    win_size=sample_params['win_size'],
                    tau_r=sample_params['tau_r'],
                    top_p=sample_params['top_p'],
                    top_k=sample_params['top_k'],
                    eos_token=sample_params['eos_token'],
                    min_tokens=sample_params['min_tokens']
                ).tolist()
            else:
                # Use the default sampler with list form of top_ks
                token_ids = self.sampler(logits, sample_params['temperatures'], sample_params['top_k']).tolist()
        else:
            logits = self.run_model(input_ids, positions, is_prefill)
            token_ids = None
        reset_context()
        return token_ids

    @torch.inference_mode()
    def capture_cudagraph(self):
        config = self.config
        hf_config = config.hf_config
        max_bs = min(self.config.max_num_seqs, 512)
        max_num_blocks = (config.max_model_len + self.block_size - 1) // self.block_size
        input_ids = torch.zeros(max_bs, dtype=torch.int64)
        positions = torch.zeros(max_bs, dtype=torch.int64)
        slot_mapping = torch.zeros(max_bs, dtype=torch.int32)
        context_lens = torch.zeros(max_bs, dtype=torch.int32)
        block_tables = torch.zeros(max_bs, max_num_blocks, dtype=torch.int32)
        outputs = torch.zeros(max_bs, hf_config.hidden_size)
        self.graph_bs = [1, 2, 4, 8] + list(range(16, max_bs + 1, 16))
        self.graphs = {}
        self.graph_pool = None

        for bs in reversed(self.graph_bs):
            graph = torch.cuda.CUDAGraph()
            set_context(False, slot_mapping=slot_mapping[:bs], context_lens=context_lens[:bs], block_tables=block_tables[:bs])
            outputs[:bs] = self.model(input_ids[:bs], positions[:bs])    # warmup
            with torch.cuda.graph(graph, self.graph_pool):
                outputs[:bs] = self.model(input_ids[:bs], positions[:bs])    # capture
            if self.graph_pool is None:
                self.graph_pool = graph.pool()
            self.graphs[bs] = graph
            torch.cuda.synchronize()
            reset_context()

        self.graph_vars = dict(
            input_ids=input_ids,
            positions=positions,
            slot_mapping=slot_mapping,
            context_lens=context_lens,
            block_tables=block_tables,
            outputs=outputs,
        )