import math from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F def subsequent_chunk_mask( size: int, chunk_size: int, num_left_chunks: int = -1, device: torch.device = torch.device("cpu"), ) -> torch.Tensor: """Create mask for subsequent steps (size, size) with chunk size, this is for streaming encoder Args: size (int): size of mask chunk_size (int): size of chunk num_left_chunks (int): number of left chunks <0: use full chunk >=0: use num_left_chunks device (torch.device): "cpu" or "cuda" or torch.Tensor.device Returns: torch.Tensor: mask Examples: >>> subsequent_chunk_mask(4, 2) [[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]] """ # NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks pos_idx = torch.arange(size, device=device) block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1) return ret def add_optional_chunk_mask(xs: torch.Tensor, masks: torch.Tensor, use_dynamic_chunk: bool, use_dynamic_left_chunk: bool, decoding_chunk_size: int, static_chunk_size: int, num_decoding_left_chunks: int, enable_full_context: bool = True): """ Apply optional mask for encoder. Args: xs (torch.Tensor): padded input, (B, L, D), L for max length mask (torch.Tensor): mask for xs, (B, 1, L) use_dynamic_chunk (bool): whether to use dynamic chunk or not use_dynamic_left_chunk (bool): whether to use dynamic left chunk for training. decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's 0: default for training, use random dynamic chunk. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. static_chunk_size (int): chunk size for static chunk training/decoding if it's greater than 0, if use_dynamic_chunk is true, this parameter will be ignored num_decoding_left_chunks: number of left chunks, this is for decoding, the chunk size is decoding_chunk_size. >=0: use num_decoding_left_chunks <0: use all left chunks enable_full_context (bool): True: chunk size is either [1, 25] or full context(max_len) False: chunk size ~ U[1, 25] Returns: torch.Tensor: chunk mask of the input xs. """ # Whether to use chunk mask or not if use_dynamic_chunk: max_len = xs.size(1) if decoding_chunk_size < 0: chunk_size = max_len num_left_chunks = -1 elif decoding_chunk_size > 0: chunk_size = decoding_chunk_size num_left_chunks = num_decoding_left_chunks else: # chunk size is either [1, 25] or full context(max_len). # Since we use 4 times subsampling and allow up to 1s(100 frames) # delay, the maximum frame is 100 / 4 = 25. chunk_size = torch.randint(1, max_len, (1, )).item() num_left_chunks = -1 if chunk_size > max_len // 2 and enable_full_context: chunk_size = max_len else: chunk_size = chunk_size % 25 + 1 if use_dynamic_left_chunk: max_left_chunks = (max_len - 1) // chunk_size num_left_chunks = torch.randint(0, max_left_chunks, (1, )).item() chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size, num_left_chunks, xs.device) # (L, L) chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) chunk_masks = masks & chunk_masks # (B, L, L) elif static_chunk_size > 0: num_left_chunks = num_decoding_left_chunks chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size, num_left_chunks, xs.device) # (L, L) chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) chunk_masks = masks & chunk_masks # (B, L, L) else: chunk_masks = masks assert chunk_masks.dtype == torch.bool if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0: print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!') chunk_masks[chunk_masks.sum(dim=-1) == 0] = True return chunk_masks def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: """Make mask tensor containing indices of padded part. See description of make_non_pad_mask. Args: lengths (torch.Tensor): Batch of lengths (B,). Returns: torch.Tensor: Mask tensor containing indices of padded part. Examples: >>> lengths = [5, 3, 2] >>> make_pad_mask(lengths) masks = [[0, 0, 0, 0 ,0], [0, 0, 0, 1, 1], [0, 0, 1, 1, 1]] """ batch_size = lengths.size(0) max_len = max_len if max_len > 0 else lengths.max().item() seq_range = torch.arange(0, max_len, dtype=torch.int64, device=lengths.device) seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) seq_length_expand = lengths.unsqueeze(-1) mask = seq_range_expand >= seq_length_expand return mask class EspnetRelPositionalEncoding(torch.nn.Module): """Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix B in https://arxiv.org/abs/1901.02860 Args: d_model (int): Embedding dimension. max_len (int): Maximum input length. """ def __init__(self, d_model: int, max_len: int = 5000): super(EspnetRelPositionalEncoding, self).__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x: torch.Tensor): """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vecotr and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i Tuple[torch.Tensor, torch.Tensor]: """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). """ self.extend_pe(x) x = x * self.xscale pos_emb = self.position_encoding(size=x.size(1), offset=offset) return x, pos_emb def position_encoding(self, offset: Union[int, torch.Tensor], size: int) -> torch.Tensor: """ For getting encoding in a streaming fashion Attention!!!!! we apply dropout only once at the whole utterance level in a none streaming way, but will call this function several times with increasing input size in a streaming scenario, so the dropout will be applied several times. Args: offset (int or torch.tensor): start offset size (int): required size of position encoding Returns: torch.Tensor: Corresponding encoding """ # How to subscript a Union type: # https://github.com/pytorch/pytorch/issues/69434 if isinstance(offset, int): pos_emb = self.pe[ :, self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset, ] elif isinstance(offset, torch.Tensor): pos_emb = self.pe[ :, self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset, ] return pos_emb class LinearNoSubsampling(torch.nn.Module): """Linear transform the input without subsampling Args: idim (int): Input dimension. odim (int): Output dimension. pos_enc_class (torch.nn.Module): Positional encoding class. """ def __init__(self, idim: int, odim: int, pos_enc_class: torch.nn.Module): super().__init__() self.out = torch.nn.Sequential( torch.nn.Linear(idim, odim), torch.nn.LayerNorm(odim, eps=1e-5), ) self.pos_enc = pos_enc_class self.right_context = 0 self.subsampling_rate = 1 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Input x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: linear input tensor (#batch, time', odim), where time' = time . torch.Tensor: linear input mask (#batch, 1, time'), where time' = time . """ x = self.out(x) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask def position_encoding(self, offset: Union[int, torch.Tensor], size: int) -> torch.Tensor: return self.pos_enc.position_encoding(offset, size) class Upsample1D(nn.Module): """A 1D upsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. use_conv_transpose (`bool`, default `False`): option to use a convolution transpose. out_channels (`int`, optional): number of output channels. Defaults to `channels`. """ def __init__(self, channels: int, out_channels: int, stride: int = 2): super().__init__() self.channels = channels self.out_channels = out_channels self.stride = stride # In this mode, first repeat interpolate, than conv with stride=1 self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0) def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest") outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0) outputs = self.conv(outputs) return outputs, input_lengths * self.stride class PreLookaheadLayer(nn.Module): def __init__(self, channels: int, pre_lookahead_len: int = 1): super().__init__() self.channels = channels self.pre_lookahead_len = pre_lookahead_len self.conv1 = nn.Conv1d( channels, channels, kernel_size=pre_lookahead_len + 1, stride=1, padding=0, ) self.conv2 = nn.Conv1d( channels, channels, kernel_size=3, stride=1, padding=0, ) def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0)) -> torch.Tensor: """ inputs: (batch_size, seq_len, channels) """ outputs = inputs.transpose(1, 2).contiguous() context = context.transpose(1, 2).contiguous() # look ahead if context.size(2) == 0: outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0) else: assert self.training is False, 'you have passed context, make sure that you are running inference mode' assert context.size(2) == self.pre_lookahead_len outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0) outputs = F.leaky_relu(self.conv1(outputs)) # outputs outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0) outputs = self.conv2(outputs) outputs = outputs.transpose(1, 2).contiguous() # residual connection outputs = outputs + inputs return outputs class MultiHeadedAttention(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. key_bias (bool): Whether to use bias in key linear layer. """ def __init__(self, n_head: int, n_feat: int, dropout_rate: float, key_bias: bool = True): super().__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor, size (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor, size (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor, size (#batch, n_head, time2, d_k). """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) # (batch, head, time1, d_k) k = k.transpose(1, 2) # (batch, head, time2, d_k) v = v.transpose(1, 2) # (batch, head, time2, d_k) return q, k, v def forward_attention( self, value: torch.Tensor, scores: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) ) -> torch.Tensor: """Compute attention context vector. Args: value (torch.Tensor): Transformed value, size (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score, size (#batch, n_head, time1, time2). mask (torch.Tensor): Mask, size (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) # NOTE(xcsong): When will `if mask.size(2) > 0` be True? # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the # 1st chunk to ease the onnx export.] # 2. pytorch training if mask.size(2) > 0: # time2 > 0 mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) # For last chunk, time2 might be larger than scores.size(-1) mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) scores = scores.masked_fill(mask, -float('inf')) attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0) # (batch, head, time1, time2) # NOTE(xcsong): When will `if mask.size(2) > 0` be False? # 1. onnx(16/-1, -1/-1, 16/0) # 2. jit (16/-1, -1/-1, 16/0, 16/4) else: attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = (x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). 1.When applying cross attention between decoder and encoder, the batch padding mask for input is in (#batch, 1, T) shape. 2.When applying self attention of encoder, the mask is in (#batch, T, T) shape. 3.When applying self attention of decoder, the mask is in (#batch, L, L) shape. 4.If the different position in decoder see different block of the encoder, such as Mocha, the passed in mask could be in (#batch, L, T) shape. But there is no such case in current CosyVoice. cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) # NOTE(xcsong): # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if cache.size(0) > 0: key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = torch.cat((k, v), dim=-1) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) return self.forward_attention(v, scores, mask), new_cache class RelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. key_bias (bool): Whether to use bias in key linear layer. """ def __init__(self, n_head: int, n_feat: int, dropout_rate: float, key_bias: bool = True): super().__init__(n_head, n_feat, dropout_rate, key_bias) # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) def rel_shift(self, x: torch.Tensor) -> torch.Tensor: """Compute relative positional encoding. Args: x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). time1 means the length of query vector. Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x)[ :, :, :, : x.size(-1) // 2 + 1 ] # only keep the positions from 0 to time2 return x def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. pos_emb (torch.Tensor): Positional embedding tensor (#batch, time2, size). cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) q = q.transpose(1, 2) # (batch, time1, head, d_k) # NOTE(xcsong): # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if cache.size(0) > 0: key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = torch.cat((k, v), dim=-1) n_batch_pos = pos_emb.size(0) p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose(1, 2) # (batch, head, time1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, time2) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used if matrix_ac.shape != matrix_bd.shape: matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask), new_cache class PositionwiseFeedForward(torch.nn.Module): """Positionwise feed forward layer. FeedForward are appied on each position of the sequence. The output dim is same with the input dim. Args: idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. activation (torch.nn.Module): Activation function """ def __init__( self, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.ReLU(), ): super(PositionwiseFeedForward, self).__init__() self.w_1 = torch.nn.Linear(idim, hidden_units) self.activation = activation self.dropout = torch.nn.Dropout(dropout_rate) self.w_2 = torch.nn.Linear(hidden_units, idim) def forward(self, xs: torch.Tensor) -> torch.Tensor: """Forward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ return self.w_2(self.dropout(self.activation(self.w_1(xs)))) class ConformerEncoderLayer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. conv_module (torch.nn.Module): Convolution module instance. `ConvlutionModule` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): True: use layer_norm before each sub-block. False: use layer_norm after each sub-block. """ def __init__( self, size: int, self_attn: torch.nn.Module, feed_forward: Optional[nn.Module] = None, feed_forward_macaron: Optional[nn.Module] = None, conv_module: Optional[nn.Module] = None, dropout_rate: float = 0.0, normalize_before: bool = True, ): super().__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.conv_module = conv_module self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module if feed_forward_macaron is not None: self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12) self.ff_scale = 0.5 else: self.ff_scale = 1.0 if self.conv_module is not None: self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module self.norm_final = nn.LayerNorm( size, eps=1e-12) # for the final output of the block self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before def forward( self, x: torch.Tensor, mask: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Compute encoded features. Args: x (torch.Tensor): (#batch, time, size) mask (torch.Tensor): Mask tensor for the input (#batch, time,time), (0, 0, 0) means fake mask. pos_emb (torch.Tensor): positional encoding, must not be None for ConformerEncoderLayer. mask_pad (torch.Tensor): batch padding mask used for conv module. (#batch, 1,time), (0, 0, 0) means fake mask. att_cache (torch.Tensor): Cache tensor of the KEY & VALUE (#batch=1, head, cache_t1, d_k * 2), head * d_k == size. cnn_cache (torch.Tensor): Convolution cache in conformer layer (#batch=1, size, cache_t2) Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time, time). torch.Tensor: att_cache tensor, (#batch=1, head, cache_t1 + time, d_k * 2). torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). """ # whether to use macaron style if self.feed_forward_macaron is not None: residual = x if self.normalize_before: x = self.norm_ff_macaron(x) x = residual + self.ff_scale * self.dropout( self.feed_forward_macaron(x)) if not self.normalize_before: x = self.norm_ff_macaron(x) # multi-headed self-attention module residual = x if self.normalize_before: x = self.norm_mha(x) x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache) x = residual + self.dropout(x_att) if not self.normalize_before: x = self.norm_mha(x) # convolution module # Fake new cnn cache here, and then change it in conv_module new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) if self.conv_module is not None: residual = x if self.normalize_before: x = self.norm_conv(x) x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) x = residual + self.dropout(x) if not self.normalize_before: x = self.norm_conv(x) # feed forward module residual = x if self.normalize_before: x = self.norm_ff(x) x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm_ff(x) if self.conv_module is not None: x = self.norm_final(x) return x, mask, new_att_cache, new_cnn_cache class UpsampleConformerEncoder(torch.nn.Module): """ Args: input_size (int): input dim output_size (int): dimension of attention attention_heads (int): the number of heads of multi head attention linear_units (int): the hidden units number of position-wise feed forward num_blocks (int): the number of decoder blocks static_chunk_size (int): chunk size for static chunk training and decoding use_dynamic_chunk (bool): whether use dynamic chunk size for training or not, You can only use fixed chunk(chunk_size > 0) or dyanmic chunk size(use_dynamic_chunk = True) use_dynamic_left_chunk (bool): whether use dynamic left chunk in dynamic chunk training key_bias: whether use bias in attention.linear_k, False for whisper models. """ def __init__( self, input_size: int = 512, output_size: int = 512, attention_heads: int = 8, linear_units: int = 2048, num_blocks: int = 6, static_chunk_size: int = 25, use_dynamic_chunk: bool = False, use_dynamic_left_chunk: bool = False, key_bias: bool = True, ): super().__init__() self._output_size = output_size self.embed = LinearNoSubsampling( input_size, output_size, EspnetRelPositionalEncoding(output_size), ) self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) self.static_chunk_size = static_chunk_size self.use_dynamic_chunk = use_dynamic_chunk self.use_dynamic_left_chunk = use_dynamic_left_chunk activation = torch.nn.SiLU() # self-attention module definition encoder_selfattn_layer_args = ( attention_heads, output_size, 0.0, key_bias, ) # feed-forward module definition positionwise_layer_args = ( output_size, linear_units, 0.0, activation, ) # convolution module definition self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3) self.encoders = torch.nn.ModuleList([ ConformerEncoderLayer( output_size, RelPositionMultiHeadedAttention(*encoder_selfattn_layer_args), PositionwiseFeedForward(*positionwise_layer_args), ) for _ in range(num_blocks) ]) self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2) self.up_embed = LinearNoSubsampling( input_size, output_size, EspnetRelPositionalEncoding(output_size), ) self.up_encoders = torch.nn.ModuleList([ ConformerEncoderLayer( output_size, RelPositionMultiHeadedAttention(*encoder_selfattn_layer_args), PositionwiseFeedForward(*positionwise_layer_args), ) for _ in range(4) ]) def output_size(self) -> int: return self._output_size def forward( self, xs: torch.Tensor, xs_lens: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0), decoding_chunk_size: int = 0, num_decoding_left_chunks: int = -1, streaming: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """Embed positions in tensor. Args: xs: padded input tensor (B, T, D) xs_lens: input length (B) decoding_chunk_size: decoding chunk size for dynamic chunk 0: default for training, use random dynamic chunk. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. num_decoding_left_chunks: number of left chunks, this is for decoding, the chunk size is decoding_chunk_size. >=0: use num_decoding_left_chunks <0: use all left chunks Returns: encoder output tensor xs, and subsampled masks xs: padded output tensor (B, T' ~= T/subsample_rate, D) masks: torch.Tensor batch padding mask after subsample (B, 1, T' ~= T/subsample_rate) NOTE(xcsong): We pass the `__call__` method of the modules instead of `forward` to the checkpointing API because `__call__` attaches all the hooks of the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 """ T = xs.size(1) masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) xs, pos_emb, masks = self.embed(xs, masks) if context.size(1) != 0: assert self.training is False, 'you have passed context, make sure that you are running inference mode' context_masks = torch.ones(1, 1, context.size(1)).to(masks) context, _, _ = self.embed(context, context_masks, offset=xs.size(1)) mask_pad = masks # (B, 1, T/subsample_rate) chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1) # lookahead + conformer encoder xs = self.pre_lookahead_layer(xs, context=context) xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) # upsample + conformer encoder xs = xs.transpose(1, 2).contiguous() xs, xs_lens = self.up_layer(xs, xs_lens) xs = xs.transpose(1, 2).contiguous() T = xs.size(1) masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) xs, pos_emb, masks = self.up_embed(xs, masks) mask_pad = masks # (B, 1, T/subsample_rate) chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size * self.up_layer.stride if streaming is True else 0, -1) xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad) xs = self.after_norm(xs) # Here we assume the mask is not changed in encoder layers, so just # return the masks before encoder layers, and the masks will be used # for cross attention with decoder later return xs, masks def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor) -> torch.Tensor: for layer in self.encoders: xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) return xs def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor) -> torch.Tensor: for layer in self.up_encoders: xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) return xs