import os import shlex import subprocess import tempfile import traceback from pathlib import Path # --- Install / fetch runtime deps & assets --- os.system("pip install -r requirements.txt") # Download token2wav assets os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/campplus.onnx -P token2wav") os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/flow.pt -P token2wav") os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/flow.yaml -P token2wav") os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/hift.pt -P token2wav") # Hugging Face token (optional) hf_token = os.getenv("HF_TOKEN", None) if hf_token is not None: os.environ["HF_TOKEN"] = hf_token import spaces import gradio as gr # ----------------------- # Utility helpers # ----------------------- def save_tmp_audio(audio_bytes: bytes, cache_dir: str) -> str: """Save raw wav bytes to a temporary file and return path.""" os.makedirs(cache_dir, exist_ok=True) with tempfile.NamedTemporaryFile(dir=cache_dir, delete=False, suffix=".wav") as temp_audio: temp_audio.write(audio_bytes) return temp_audio.name def add_message(chatbot, history, mic, text): """Append user text or audio to the chat + history.""" if not mic and not text: return chatbot, history, "Input is empty" if text: chatbot.append({"role": "user", "content": text}) history.append({"role": "human", "content": text}) elif mic and Path(mic).exists(): chatbot.append({"role": "user", "content": {"path": mic}}) history.append({"role": "human", "content": [{"type": "audio", "audio": mic}]}) print(f"{history=}") return chatbot, history, None def reset_state(system_prompt: str): """Reset chat to a single system message.""" return [], [{"role": "system", "content": system_prompt}] # ----------------------- # Lazy model loading inside the GPU worker # ----------------------- _MODEL = None _TOK2WAV = None def _get_models(model_path: str): """ Lazily load heavy, non-picklable models INSIDE the worker process and cache them in module globals for reuse. """ global _MODEL, _TOK2WAV if _MODEL is None or _TOK2WAV is None: # Import here so the objects are constructed in the worker from stepaudio2 import StepAudio2 from token2wav import Token2wav _MODEL = StepAudio2(model_path) _TOK2WAV = Token2wav("token2wav") return _MODEL, _TOK2WAV # ----------------------- # Inference # ----------------------- @spaces.GPU def predict(chatbot, history, prompt_wav_path, cache_dir, model_path="Step-Audio-2-mini"): """ Run generation on GPU worker. All args must be picklable (strings, lists, dicts). Heavy models are created via _get_models() inside this process. `prompt_wav_path` is the CURRENT reference audio to condition on (can be user upload). """ try: audio_model, token2wav = _get_models(model_path) history.append({ "role": "assistant", "content": [{"type": "text", "text": ""}], "eot": False }) tokens, text, audio_tokens = audio_model( history, max_new_tokens=4096, temperature=0.7, repetition_penalty=1.05, do_sample=True, ) print(f"predict text={text!r}") # Convert tokens -> waveform bytes using token2wav with the *selected* prompt prompt_path = prompt_wav_path if (prompt_wav_path and Path(prompt_wav_path).exists()) else None audio_bytes = token2wav(audio_tokens, prompt_path) # Persist to temp .wav for the UI audio_path = save_tmp_audio(audio_bytes, cache_dir) # Append assistant audio message chatbot.append({"role": "assistant", "content": {"path": audio_path}}) history[-1]["content"].append({"type": "token", "token": tokens}) history[-1]["eot"] = True except Exception: print(traceback.format_exc()) gr.Warning("Some error happened, please try again.") return chatbot, history # ----------------------- # UI # ----------------------- def _launch_demo(args): with gr.Blocks(delete_cache=(86400, 86400)) as demo: gr.Markdown("""
Step Audio 2 Demo
""") with gr.Row(): system_prompt = gr.Textbox( label="System Prompt", value=( "你的名字叫做小跃,是由阶跃星辰公司训练出来的语音大模型。\n" "你情感细腻,观察能力强,擅长分析用户的内容,并作出善解人意的回复," "说话的过程中时刻注意用户的感受,富有同理心,提供多样的情绪价值。\n" "今天是2025年8月29日,星期五\n" "请用默认女声与用户交流。" ), lines=2, ) chatbot = gr.Chatbot( elem_id="chatbot", min_height=800, type="messages", ) # Initialize history with current system prompt value history = gr.State([{"role": "system", "content": system_prompt.value}]) # NEW: keep track of the *current* prompt wav path (defaults to bundled voice) current_prompt_wav = gr.State(args.prompt_wav) mic = gr.Audio(type="filepath", label="🎤 Speak (optional)") text = gr.Textbox(placeholder="Enter message ...", label="💬 Text") with gr.Row(): clean_btn = gr.Button("🧹 Clear History (清除历史)") regen_btn = gr.Button("🤔️ Regenerate (重试)") submit_btn = gr.Button("🚀 Submit") def on_submit(chatbot_val, history_val, mic_val, text_val, current_prompt): chatbot2, history2, error = add_message(chatbot_val, history_val, mic_val, text_val) if error: gr.Warning(error) # keep state intact return chatbot2, history2, None, None, current_prompt # Choose prompt: prefer latest user mic if present, else stick to remembered prompt prompt_path = mic_val if (mic_val and Path(mic_val).exists()) else current_prompt chatbot2, history2 = predict( chatbot2, history2, prompt_path, args.cache_dir, model_path=args.model_path, ) # Clear inputs; remember the prompt we actually used new_prompt_state = prompt_path return chatbot2, history2, None, None, new_prompt_state submit_btn.click( fn=on_submit, inputs=[chatbot, history, mic, text, current_prompt_wav], outputs=[chatbot, history, mic, text, current_prompt_wav], concurrency_limit=4, concurrency_id="gpu_queue", ) def on_clean(system_prompt_text, _default_prompt): # Reset chat and also reset the remembered prompt back to default new_chatbot, new_history = reset_state(system_prompt_text) return new_chatbot, new_history, _default_prompt clean_btn.click( fn=on_clean, inputs=[system_prompt, current_prompt_wav], outputs=[chatbot, history, current_prompt_wav], ) def on_regenerate(chatbot_val, history_val, current_prompt): # Drop last assistant turn(s) to regenerate while chatbot_val and chatbot_val[-1]["role"] == "assistant": chatbot_val.pop() while history_val and history_val[-1]["role"] == "assistant": print(f"discard {history_val[-1]}") history_val.pop() return predict( chatbot_val, history_val, current_prompt, # use the remembered prompt for regen args.cache_dir, model_path=args.model_path, ) regen_btn.click( fn=on_regenerate, inputs=[chatbot, history, current_prompt_wav], outputs=[chatbot, history], concurrency_id="gpu_queue", ) demo.queue().launch( server_port=args.server_port, server_name=args.server_name, ) # ----------------------- # Entrypoint # ----------------------- if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--model-path", type=str, default="Step-Audio-2-mini", help="Model path.") parser.add_argument("--server-port", type=int, default=7860, help="Demo server port.") parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Demo server name.") parser.add_argument("--prompt-wav", type=str, default="assets/default_female.wav", help="Prompt wave for the assistant.") parser.add_argument("--cache-dir", type=str, default="/tmp/stepaudio2", help="Cache directory.") args = parser.parse_args() os.environ["GRADIO_TEMP_DIR"] = args.cache_dir Path(args.cache_dir).mkdir(parents=True, exist_ok=True) _launch_demo(args)