Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,8 +6,6 @@ from twilio.rest import Client
|
|
| 6 |
import os
|
| 7 |
import torch
|
| 8 |
import librosa
|
| 9 |
-
import spaces
|
| 10 |
-
|
| 11 |
|
| 12 |
pipe = transformers.pipeline(
|
| 13 |
model="reach-vb/smolvox-smollm2-whisper-turbo",
|
|
@@ -23,9 +21,7 @@ auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
| 23 |
|
| 24 |
if account_sid and auth_token:
|
| 25 |
client = Client(account_sid, auth_token)
|
| 26 |
-
|
| 27 |
token = client.tokens.create()
|
| 28 |
-
|
| 29 |
rtc_configuration = {
|
| 30 |
"iceServers": token.ice_servers,
|
| 31 |
"iceTransportPolicy": "relay",
|
|
@@ -33,12 +29,8 @@ if account_sid and auth_token:
|
|
| 33 |
else:
|
| 34 |
rtc_configuration = None
|
| 35 |
|
| 36 |
-
|
| 37 |
-
def transcribe(
|
| 38 |
-
audio: tuple[int, np.ndarray],
|
| 39 |
-
transformers_chat: list[dict],
|
| 40 |
-
conversation: list[dict],
|
| 41 |
-
):
|
| 42 |
original_sr = audio[0]
|
| 43 |
target_sr = 16000
|
| 44 |
|
|
@@ -48,7 +40,7 @@ def transcribe(
|
|
| 48 |
|
| 49 |
tf_input = [d for d in transformers_chat]
|
| 50 |
|
| 51 |
-
# Generate response from the pipeline using the audio input
|
| 52 |
output = pipe(
|
| 53 |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr},
|
| 54 |
max_new_tokens=512,
|
|
@@ -64,22 +56,16 @@ def transcribe(
|
|
| 64 |
|
| 65 |
yield AdditionalOutputs(transformers_chat, conversation)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
def respond_text(
|
| 69 |
-
user_text: str,
|
| 70 |
-
transformers_chat: list[dict],
|
| 71 |
-
conversation: list[dict],
|
| 72 |
-
):
|
| 73 |
if not user_text.strip():
|
| 74 |
-
# Do nothing if the textbox is empty
|
| 75 |
return transformers_chat, conversation
|
| 76 |
|
| 77 |
# Append the user message from the textbox
|
| 78 |
conversation.append({"role": "user", "content": user_text})
|
| 79 |
transformers_chat.append({"role": "user", "content": user_text})
|
| 80 |
|
| 81 |
-
# Generate a response using the pipeline.
|
| 82 |
-
# Here we assume the pipeline can also process text input via the "text" key.
|
| 83 |
output = pipe({"text": user_text, "turns": transformers_chat}, max_new_tokens=512)
|
| 84 |
|
| 85 |
conversation.append({"role": "assistant", "content": output})
|
|
@@ -90,18 +76,19 @@ def respond_text(
|
|
| 90 |
with gr.Blocks() as demo:
|
| 91 |
gr.HTML(
|
| 92 |
"""
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
)
|
|
|
|
| 105 |
# Shared conversation state
|
| 106 |
transformers_chat = gr.State(
|
| 107 |
value=[
|
|
@@ -112,13 +99,15 @@ with gr.Blocks() as demo:
|
|
| 112 |
]
|
| 113 |
)
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
with gr.Row():
|
| 116 |
with gr.Column(scale=1):
|
| 117 |
-
transcript = gr.Chatbot(label="Transcript", type="messages")
|
| 118 |
text_input = gr.Textbox(
|
| 119 |
-
placeholder="Type your message here...", label="Your Message"
|
| 120 |
)
|
| 121 |
-
send_button = gr.Button("Send")
|
| 122 |
with gr.Column(scale=1):
|
| 123 |
audio = WebRTC(
|
| 124 |
rtc_configuration=rtc_configuration,
|
|
@@ -127,7 +116,7 @@ with gr.Blocks() as demo:
|
|
| 127 |
modality="audio",
|
| 128 |
)
|
| 129 |
|
| 130 |
-
# Audio stream:
|
| 131 |
audio.stream(
|
| 132 |
ReplyOnPause(transcribe),
|
| 133 |
inputs=[audio, transformers_chat, transcript],
|
|
@@ -141,14 +130,14 @@ with gr.Blocks() as demo:
|
|
| 141 |
show_progress="hidden",
|
| 142 |
)
|
| 143 |
|
| 144 |
-
# Text input:
|
| 145 |
-
|
| 146 |
respond_text,
|
| 147 |
inputs=[text_input, transformers_chat, transcript],
|
| 148 |
outputs=[transformers_chat, transcript],
|
| 149 |
)
|
| 150 |
-
#
|
| 151 |
-
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
demo.launch()
|
|
|
|
| 6 |
import os
|
| 7 |
import torch
|
| 8 |
import librosa
|
|
|
|
|
|
|
| 9 |
|
| 10 |
pipe = transformers.pipeline(
|
| 11 |
model="reach-vb/smolvox-smollm2-whisper-turbo",
|
|
|
|
| 21 |
|
| 22 |
if account_sid and auth_token:
|
| 23 |
client = Client(account_sid, auth_token)
|
|
|
|
| 24 |
token = client.tokens.create()
|
|
|
|
| 25 |
rtc_configuration = {
|
| 26 |
"iceServers": token.ice_servers,
|
| 27 |
"iceTransportPolicy": "relay",
|
|
|
|
| 29 |
else:
|
| 30 |
rtc_configuration = None
|
| 31 |
|
| 32 |
+
|
| 33 |
+
def transcribe(audio: tuple[int, np.ndarray], transformers_chat: list[dict], conversation: list[dict]):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
original_sr = audio[0]
|
| 35 |
target_sr = 16000
|
| 36 |
|
|
|
|
| 40 |
|
| 41 |
tf_input = [d for d in transformers_chat]
|
| 42 |
|
| 43 |
+
# Generate a response from the pipeline using the audio input
|
| 44 |
output = pipe(
|
| 45 |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr},
|
| 46 |
max_new_tokens=512,
|
|
|
|
| 56 |
|
| 57 |
yield AdditionalOutputs(transformers_chat, conversation)
|
| 58 |
|
| 59 |
+
|
| 60 |
+
def respond_text(user_text: str, transformers_chat: list[dict], conversation: list[dict]):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if not user_text.strip():
|
|
|
|
| 62 |
return transformers_chat, conversation
|
| 63 |
|
| 64 |
# Append the user message from the textbox
|
| 65 |
conversation.append({"role": "user", "content": user_text})
|
| 66 |
transformers_chat.append({"role": "user", "content": user_text})
|
| 67 |
|
| 68 |
+
# Generate a response using the pipeline. We assume it can process text input via "text"
|
|
|
|
| 69 |
output = pipe({"text": user_text, "turns": transformers_chat}, max_new_tokens=512)
|
| 70 |
|
| 71 |
conversation.append({"role": "assistant", "content": output})
|
|
|
|
| 76 |
with gr.Blocks() as demo:
|
| 77 |
gr.HTML(
|
| 78 |
"""
|
| 79 |
+
<h1 style='text-align: center'>
|
| 80 |
+
Talk to Smolvox Smollm2 1.7b (Powered by WebRTC ⚡️)
|
| 81 |
+
</h1>
|
| 82 |
+
<p style='text-align: center'>
|
| 83 |
+
Once you grant access to your microphone, you can talk naturally to Ultravox.
|
| 84 |
+
When you stop talking, the audio will be sent for processing.
|
| 85 |
+
</p>
|
| 86 |
+
<p style='text-align: center'>
|
| 87 |
+
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation.
|
| 88 |
+
</p>
|
| 89 |
+
"""
|
| 90 |
)
|
| 91 |
+
|
| 92 |
# Shared conversation state
|
| 93 |
transformers_chat = gr.State(
|
| 94 |
value=[
|
|
|
|
| 99 |
]
|
| 100 |
)
|
| 101 |
|
| 102 |
+
# Chat transcript at the top
|
| 103 |
+
transcript = gr.Chatbot(label="Transcript", type="messages")
|
| 104 |
+
|
| 105 |
+
# Lower row: text input and audio input side by side
|
| 106 |
with gr.Row():
|
| 107 |
with gr.Column(scale=1):
|
|
|
|
| 108 |
text_input = gr.Textbox(
|
| 109 |
+
placeholder="Type your message here and press Enter...", label="Your Message"
|
| 110 |
)
|
|
|
|
| 111 |
with gr.Column(scale=1):
|
| 112 |
audio = WebRTC(
|
| 113 |
rtc_configuration=rtc_configuration,
|
|
|
|
| 116 |
modality="audio",
|
| 117 |
)
|
| 118 |
|
| 119 |
+
# Audio stream: process audio when speaking stops.
|
| 120 |
audio.stream(
|
| 121 |
ReplyOnPause(transcribe),
|
| 122 |
inputs=[audio, transformers_chat, transcript],
|
|
|
|
| 130 |
show_progress="hidden",
|
| 131 |
)
|
| 132 |
|
| 133 |
+
# Text input: submit callback when pressing Enter.
|
| 134 |
+
text_input.submit(
|
| 135 |
respond_text,
|
| 136 |
inputs=[text_input, transformers_chat, transcript],
|
| 137 |
outputs=[transformers_chat, transcript],
|
| 138 |
)
|
| 139 |
+
# Clear text input after submission.
|
| 140 |
+
text_input.submit(lambda: "", inputs=[], outputs=[text_input])
|
| 141 |
|
| 142 |
if __name__ == "__main__":
|
| 143 |
demo.launch()
|