Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,9 @@
|
|
| 1 |
# app.py
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import pipeline
|
| 4 |
-
from googletrans import Translator
|
| 5 |
from rouge_score import rouge_scorer
|
| 6 |
import torch
|
| 7 |
|
| 8 |
-
# -------------------------------
|
| 9 |
-
# Page Config
|
| 10 |
-
# -------------------------------
|
| 11 |
st.set_page_config(page_title="Multilingual Summarization Dashboard", layout="wide")
|
| 12 |
|
| 13 |
# -------------------------------
|
|
@@ -17,47 +13,74 @@ with open("style.css") as f:
|
|
| 17 |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 18 |
|
| 19 |
# -------------------------------
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# -------------------------------
|
| 22 |
@st.cache_resource(show_spinner=True)
|
| 23 |
-
def load_models():
|
| 24 |
models = {}
|
| 25 |
models['urT5-base'] = pipeline(
|
| 26 |
"summarization",
|
| 27 |
model="mbshr/urt5-base-finetuned",
|
| 28 |
-
device=0 if torch.cuda.is_available() else -1
|
|
|
|
| 29 |
)
|
| 30 |
models['mT5-small'] = pipeline(
|
| 31 |
"summarization",
|
| 32 |
model="google/mt5-small",
|
| 33 |
-
device=0 if torch.cuda.is_available() else -1
|
|
|
|
| 34 |
)
|
| 35 |
models['mT5-base'] = pipeline(
|
| 36 |
"summarization",
|
| 37 |
model="google/mt5-base",
|
| 38 |
-
device=0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
return models
|
| 41 |
|
| 42 |
-
models = load_models()
|
| 43 |
-
translator = Translator()
|
| 44 |
-
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
| 45 |
|
| 46 |
# -------------------------------
|
| 47 |
-
# Sidebar
|
| 48 |
# -------------------------------
|
| 49 |
st.sidebar.title("Settings")
|
| 50 |
-
selected_model = st.sidebar.selectbox("Choose Summarization Model",
|
| 51 |
max_length = st.sidebar.slider("Max summary length", 50, 500, 150)
|
| 52 |
min_length = st.sidebar.slider("Min summary length", 10, 300, 40)
|
| 53 |
-
target_lang = st.sidebar.selectbox("Translate summary to", ["None", "English", "Urdu"
|
| 54 |
show_comparison = st.sidebar.checkbox("Compare models")
|
| 55 |
show_rouge = st.sidebar.checkbox("Show ROUGE Score (requires reference)")
|
| 56 |
|
| 57 |
# -------------------------------
|
| 58 |
# Main Interface
|
| 59 |
# -------------------------------
|
| 60 |
-
st.title("🌐 Multilingual Summarization Dashboard")
|
| 61 |
st.write("Enter text to summarize, optionally translate, compare models, and evaluate with ROUGE.")
|
| 62 |
|
| 63 |
text = st.text_area("Enter text to summarize:", height=200)
|
|
@@ -69,11 +92,13 @@ if show_rouge:
|
|
| 69 |
# Generate Summary
|
| 70 |
# -------------------------------
|
| 71 |
if st.button("Generate Summary"):
|
| 72 |
-
if not
|
|
|
|
|
|
|
| 73 |
st.error("Please enter some text!")
|
| 74 |
else:
|
| 75 |
-
#
|
| 76 |
-
chunk_size = 500
|
| 77 |
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
| 78 |
full_summary = ""
|
| 79 |
for chunk in chunks:
|
|
@@ -85,26 +110,29 @@ if st.button("Generate Summary"):
|
|
| 85 |
|
| 86 |
# Translation
|
| 87 |
if target_lang != "None":
|
| 88 |
-
lang_code = target_lang[:2].lower()
|
| 89 |
try:
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
st.subheader(f"Summary in {target_lang}:")
|
| 92 |
-
st.write(
|
| 93 |
except Exception as e:
|
| 94 |
st.warning(f"Translation failed: {str(e)}")
|
| 95 |
|
| 96 |
# Model comparison
|
| 97 |
if show_comparison:
|
| 98 |
st.subheader("Comparison with other models:")
|
| 99 |
-
for model_name,
|
| 100 |
if model_name != selected_model:
|
| 101 |
comp_summary = ""
|
| 102 |
for chunk in chunks:
|
| 103 |
-
comp_summary +=
|
| 104 |
st.markdown(f"**{model_name} Summary:** {comp_summary}")
|
| 105 |
|
| 106 |
# ROUGE Evaluation
|
| 107 |
if show_rouge and reference_text.strip():
|
|
|
|
| 108 |
scores = scorer.score(reference_text, full_summary)
|
| 109 |
st.subheader("ROUGE Scores:")
|
| 110 |
for k, v in scores.items():
|
|
|
|
| 1 |
# app.py
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import pipeline
|
|
|
|
| 4 |
from rouge_score import rouge_scorer
|
| 5 |
import torch
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
st.set_page_config(page_title="Multilingual Summarization Dashboard", layout="wide")
|
| 8 |
|
| 9 |
# -------------------------------
|
|
|
|
| 13 |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 14 |
|
| 15 |
# -------------------------------
|
| 16 |
+
# Hugging Face API Token
|
| 17 |
+
# -------------------------------
|
| 18 |
+
st.sidebar.title("Hugging Face API Token")
|
| 19 |
+
api_token = st.sidebar.text_input(
|
| 20 |
+
"Enter your Hugging Face API token:",
|
| 21 |
+
type="password",
|
| 22 |
+
help="Get your token from https://huggingface.co/settings/tokens"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
if not api_token:
|
| 26 |
+
st.warning("Please enter your Hugging Face API token to enable model inference.")
|
| 27 |
+
|
| 28 |
+
# -------------------------------
|
| 29 |
+
# Model Initialization
|
| 30 |
# -------------------------------
|
| 31 |
@st.cache_resource(show_spinner=True)
|
| 32 |
+
def load_models(token):
|
| 33 |
models = {}
|
| 34 |
models['urT5-base'] = pipeline(
|
| 35 |
"summarization",
|
| 36 |
model="mbshr/urt5-base-finetuned",
|
| 37 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 38 |
+
use_auth_token=token
|
| 39 |
)
|
| 40 |
models['mT5-small'] = pipeline(
|
| 41 |
"summarization",
|
| 42 |
model="google/mt5-small",
|
| 43 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 44 |
+
use_auth_token=token
|
| 45 |
)
|
| 46 |
models['mT5-base'] = pipeline(
|
| 47 |
"summarization",
|
| 48 |
model="google/mt5-base",
|
| 49 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 50 |
+
use_auth_token=token
|
| 51 |
+
)
|
| 52 |
+
# Translation models
|
| 53 |
+
models['en→ur'] = pipeline(
|
| 54 |
+
"translation",
|
| 55 |
+
model="Helsinki-NLP/opus-mt-en-ur",
|
| 56 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 57 |
+
use_auth_token=token
|
| 58 |
+
)
|
| 59 |
+
models['ur→en'] = pipeline(
|
| 60 |
+
"translation",
|
| 61 |
+
model="Helsinki-NLP/opus-mt-ur-en",
|
| 62 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 63 |
+
use_auth_token=token
|
| 64 |
)
|
| 65 |
return models
|
| 66 |
|
| 67 |
+
models = load_models(api_token) if api_token else {}
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# -------------------------------
|
| 70 |
+
# Sidebar Settings
|
| 71 |
# -------------------------------
|
| 72 |
st.sidebar.title("Settings")
|
| 73 |
+
selected_model = st.sidebar.selectbox("Choose Summarization Model", ["urT5-base", "mT5-small", "mT5-base"])
|
| 74 |
max_length = st.sidebar.slider("Max summary length", 50, 500, 150)
|
| 75 |
min_length = st.sidebar.slider("Min summary length", 10, 300, 40)
|
| 76 |
+
target_lang = st.sidebar.selectbox("Translate summary to", ["None", "English", "Urdu"])
|
| 77 |
show_comparison = st.sidebar.checkbox("Compare models")
|
| 78 |
show_rouge = st.sidebar.checkbox("Show ROUGE Score (requires reference)")
|
| 79 |
|
| 80 |
# -------------------------------
|
| 81 |
# Main Interface
|
| 82 |
# -------------------------------
|
| 83 |
+
st.title("🌐 Multilingual Summarization Dashboard (API Version)")
|
| 84 |
st.write("Enter text to summarize, optionally translate, compare models, and evaluate with ROUGE.")
|
| 85 |
|
| 86 |
text = st.text_area("Enter text to summarize:", height=200)
|
|
|
|
| 92 |
# Generate Summary
|
| 93 |
# -------------------------------
|
| 94 |
if st.button("Generate Summary"):
|
| 95 |
+
if not api_token:
|
| 96 |
+
st.error("Please provide Hugging Face API token.")
|
| 97 |
+
elif not text.strip():
|
| 98 |
st.error("Please enter some text!")
|
| 99 |
else:
|
| 100 |
+
# Chunking
|
| 101 |
+
chunk_size = 500
|
| 102 |
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
| 103 |
full_summary = ""
|
| 104 |
for chunk in chunks:
|
|
|
|
| 110 |
|
| 111 |
# Translation
|
| 112 |
if target_lang != "None":
|
|
|
|
| 113 |
try:
|
| 114 |
+
if target_lang == "English":
|
| 115 |
+
translated = models['ur→en'](full_summary)[0]['translation_text']
|
| 116 |
+
else: # Urdu
|
| 117 |
+
translated = models['en→ur'](full_summary)[0]['translation_text']
|
| 118 |
st.subheader(f"Summary in {target_lang}:")
|
| 119 |
+
st.write(translated)
|
| 120 |
except Exception as e:
|
| 121 |
st.warning(f"Translation failed: {str(e)}")
|
| 122 |
|
| 123 |
# Model comparison
|
| 124 |
if show_comparison:
|
| 125 |
st.subheader("Comparison with other models:")
|
| 126 |
+
for model_name in ["urT5-base", "mT5-small", "mT5-base"]:
|
| 127 |
if model_name != selected_model:
|
| 128 |
comp_summary = ""
|
| 129 |
for chunk in chunks:
|
| 130 |
+
comp_summary += models[model_name](chunk, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text'] + " "
|
| 131 |
st.markdown(f"**{model_name} Summary:** {comp_summary}")
|
| 132 |
|
| 133 |
# ROUGE Evaluation
|
| 134 |
if show_rouge and reference_text.strip():
|
| 135 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
| 136 |
scores = scorer.score(reference_text, full_summary)
|
| 137 |
st.subheader("ROUGE Scores:")
|
| 138 |
for k, v in scores.items():
|