Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from llama_index import ( | |
| SimpleDirectoryReader, | |
| VectorStoreIndex, | |
| ServiceContext, | |
| ) | |
| from llama_index.llms import LlamaCPP | |
| from llama_index.llms.llama_utils import ( | |
| messages_to_prompt, | |
| completion_to_prompt, | |
| ) | |
| from langchain.schema import(SystemMessage, HumanMessage, AIMessage) | |
| def init_page() -> None: | |
| st.set_page_config( | |
| page_title="Personal Chatbot" | |
| ) | |
| st.header("Persoanl Chatbot") | |
| st.sidebar.title("Options") | |
| def select_llm() -> LlamaCPP: | |
| return LlamaCPP( | |
| model_path="/content/llama-2-7b-chat.Q2_K.gguf", | |
| temperature=0.1, | |
| max_new_tokens=500, | |
| context_window=3900, | |
| generate_kwargs={}, | |
| model_kwargs={"n_gpu_layers":1}, | |
| messages_to_prompt=messages_to_prompt, | |
| completion_to_prompt=completion_to_prompt, | |
| verbose=True, | |
| ) | |
| def init_messages() -> None: | |
| clear_button = st.sidebar.button("Clear Conversation", key="clear") | |
| if clear_button or "messages" not in st.session_state: | |
| st.session_state.messages = [ | |
| SystemMessage( | |
| content="you are a helpful AI assistant. Reply your answer in markdown format." | |
| ) | |
| ] | |
| def get_answer(llm, messages) -> str: | |
| response = llm.complete(messages) | |
| return response.text | |
| def main() -> None: | |
| init_page() | |
| llm = select_llm() | |
| init_messages() | |
| if user_input := st.chat_input("Input your question!"): | |
| st.session_state.messages.append(HumanMessage(content=user_input)) | |
| with st.spinner("Bot is typing ..."): | |
| answer = get_answer(llm, user_input) | |
| print(answer) | |
| st.session_state.messages.append(AIMessage(content=answer)) | |
| messages = st.session_state.get("messages", []) | |
| for message in messages: | |
| if isinstance(message, AIMessage): | |
| with st.chat_message("assistant"): | |
| st.markdown(message.content) | |
| elif isinstance(message, HumanMessage): | |
| with st.chat_message("user"): | |
| st.markdown(message.content) | |
| if __name__ == "__main__": | |
| main() |