plataformas / app.py
SurFuturo's picture
Update app.py
d727f97 verified
import os, glob, re
import gradio as gr
from docx import Document
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# --- QA (transformers) ---
from transformers import pipeline
# ------------------ Config ------------------
DOCS_DIR = "." # .docx en la raíz del Space
CHUNK_SIZE = 900 # longitud del fragmento (caracteres)
OVERLAP = 150 # solapamiento
TOP_K_RETRIEVE = 5 # fragmentos candidatos para QA
TOP_K_SHOW = 3 # fragmentos a mostrar en modo "fragmentos"
QA_MODEL = "mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es"
QA_THRESHOLD = 0.25 # umbral mínimo de confianza del modelo QA
# Stopwords (lista breve en español)
SPANISH_STOPWORDS = [
"de","la","que","el","en","y","a","los","del","se","las","por","un","para","con",
"no","una","su","al","lo","como","más","pero","sus","le","ya","o","fue","este",
"ha","sí","porque","esta","son","entre","cuando","muy","sin","sobre","también",
"me","hasta","hay","donde","quien","desde","todo","nos","durante","todos","uno",
"les","ni","contra","otros","ese","eso","ante","ellos","e","esto","mí","antes",
"algunos","qué","unos","yo","otro","otras","otra","él","tanto","esa","estos",
"mucho","quienes","nada","muchos","cual","poco","ella","estar","estas","algunas",
"algo","nosotros","mi","mis","tú","te","ti","tu","tus","ellas","nosotras","vosotros",
"vosotras","os","mío","mía","míos","mías","tuyo","tuya","tuyos","tuyas","suyo",
"suya","suyos","suyas","nuestro","nuestra","nuestros","nuestras","vuestro",
"vuestra","vuestros","vuestras","esos","esas","estoy","estás","está","estamos",
"estáis","están","ser","soy","eres","somos","sois","era","eras","éramos","erais","eran"
]
# ------------------ Utilidades ------------------
def _read_docx(path: str) -> str:
doc = Document(path)
parts = [p.text.strip() for p in doc.paragraphs if p.text and p.text.strip()]
return "\n".join(parts)
def _chunk(text: str, size: int = CHUNK_SIZE, overlap: int = OVERLAP):
text = re.sub(r"\s+", " ", text).strip()
if not text:
return []
chunks, i = [], 0
step = max(1, size - overlap)
while i < len(text):
chunks.append(text[i:i+size])
i += step
return chunks
# ------------------ Indexación ------------------
corpus, sources = [], []
indexed_files, skipped_files = [], []
def build_index():
global corpus, sources, indexed_files, skipped_files, vectorizer, X
corpus, sources = [], []
indexed_files, skipped_files = [], []
for path in sorted(glob.glob(os.path.join(DOCS_DIR, "*.docx"))):
try:
txt = _read_docx(path)
chs = _chunk(txt)
if chs:
corpus.extend(chs)
sources.extend([path] * len(chs))
indexed_files.append(os.path.basename(path))
else:
skipped_files.append((os.path.basename(path), "Sin texto utilizable"))
except Exception as e:
skipped_files.append((os.path.basename(path), f"Error al leer: {e}"))
if not corpus:
corpus[:] = ["(No hay texto indexado: agregá .docx con contenido)"]
sources[:] = [""]
vectorizer = TfidfVectorizer(stop_words=SPANISH_STOPWORDS, lowercase=True)
X = vectorizer.fit_transform(corpus)
build_index()
# ------------------ QA ------------------
qa = pipeline("question-answering", model=QA_MODEL)
def answer_qa(question: str):
"""Corre QA sobre los TOP_K_RETRIEVE fragmentos y devuelve mejor respuesta."""
q = vectorizer.transform([question])
sims = cosine_similarity(q, X).ravel()
top_idx = sims.argsort()[::-1][:TOP_K_RETRIEVE]
best = None
for i in top_idx:
context = corpus[i]
res = qa(question=question, context=context)
# res: {'score': float, 'start': int, 'end': int, 'answer': text}
candidate = {
"text": res.get("answer", "").strip(),
"score": float(res.get("score", 0.0)),
"source": os.path.basename(sources[i]),
"context": context
}
if not best or candidate["score"] > best["score"]:
best = candidate
return best
# ------------------ Funciones UI ------------------
def chat_fn(message, history, modo_qa):
if "(No hay texto indexado" in corpus[0]:
return "No hay texto indexado aún. Verificá que los .docx tengan contenido."
if modo_qa:
best = answer_qa(message)
if best and best["text"] and best["score"] >= QA_THRESHOLD:
return f"**Respuesta:** {best['text']}\n\n**Fuente:** {best['source']} \n*(confianza: {best['score']:.2f})*"
else:
# fallback a fragmentos cuando la confianza es baja
q = vectorizer.transform([message])
sims = cosine_similarity(q, X).ravel()
top_idx = sims.argsort()[::-1][:TOP_K_SHOW]
bullets = []
for i in top_idx:
frag = corpus[i]
src = os.path.basename(sources[i])
bullets.append(f"**{src}** · …{frag[:420]}…")
return (
"No puedo responder con suficiente confianza. Te dejo los fragmentos más cercanos:\n\n- "
+ "\n- ".join(bullets)
)
else:
# modo fragmentos (como ahora)
q = vectorizer.transform([message])
sims = cosine_similarity(q, X).ravel()
top_idx = sims.argsort()[::-1][:TOP_K_SHOW]
bullets = []
for i in top_idx:
frag = corpus[i]
src = os.path.basename(sources[i])
bullets.append(f"**{src}** · …{frag[:420]}…")
return "Fragmentos relevantes:\n\n- " + "\n- ".join(bullets)
def status_fn():
lines = []
if indexed_files:
lines.append("**Archivos indexados:**")
for f in indexed_files:
lines.append(f"- " + f)
if skipped_files:
lines.append("\n**Archivos saltados:**")
for f, why in skipped_files:
lines.append(f"- {f}: {why}")
if not lines:
lines.append("No se encontró ningún .docx en el directorio.")
return "\n".join(lines)
# ------------------ Interfaz Gradio ------------------
with gr.Blocks() as demo:
gr.Markdown("## Chat de documentos (DOCX) — con respuesta natural (QA)")
gr.Markdown(
"Activá **Respuesta natural (QA)** para que el sistema intente contestar en español "
"a partir del fragmento más relevante; si la confianza es baja, mostrará fragmentos."
)
with gr.Tabs():
with gr.Tab("Chat"):
modo_qa = gr.Checkbox(label="Respuesta natural (QA)", value=True)
chat = gr.ChatInterface(
fn=lambda msg, hist: chat_fn(msg, hist, modo_qa.value),
title=None, description=None
)
# Vincular el checkbox al chat (simple workaround)
modo_qa.change(fn=lambda x: None, inputs=modo_qa, outputs=[])
with gr.Tab("Estado"):
btn = gr.Button("Actualizar estado")
out = gr.Markdown(status_fn())
btn.click(fn=lambda: status_fn(), outputs=out)
if __name__ == "__main__":
demo.launch()