Spaces:
Running
on
Zero
Running
on
Zero
| # utils/depth_estimation.py | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import open3d as o3d | |
| from transformers import DPTImageProcessor, DPTForDepthEstimation | |
| from pathlib import Path | |
| import logging | |
| logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) | |
| from utils.image_utils import ( | |
| resize_image_with_aspect_ratio | |
| ) | |
| # Load models once during module import | |
| image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
| depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True) | |
| def estimate_depth(image): | |
| # Ensure image is in RGB mode | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| # Resize the image for the model | |
| image_resized = image.resize( | |
| (image.width, image.height), | |
| Image.Resampling.LANCZOS | |
| ) | |
| # Prepare image for the model | |
| encoding = image_processor(image_resized, return_tensors="pt") | |
| # Forward pass | |
| with torch.no_grad(): | |
| outputs = depth_model(**encoding) | |
| predicted_depth = outputs.predicted_depth | |
| # Interpolate to original size | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=(image.height, image.width), | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze() | |
| # Convert to depth image | |
| output = prediction.cpu().numpy() | |
| depth_min = output.min() | |
| depth_max = output.max() | |
| max_val = (2**8) - 1 | |
| # Normalize and convert to 8-bit image | |
| depth_image = max_val * (output - depth_min) / (depth_max - depth_min) | |
| depth_image = depth_image.astype("uint8") | |
| depth_pil = Image.fromarray(depth_image) | |
| return depth_pil, output | |
| def create_3d_model(rgb_image, depth_array, voxel_size_factor=0.01): | |
| depth_o3d = o3d.geometry.Image(depth_array.astype(np.float32)) | |
| rgb_o3d = o3d.geometry.Image(np.array(rgb_image)) | |
| rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
| rgb_o3d, | |
| depth_o3d, | |
| convert_rgb_to_intensity=False | |
| ) | |
| # Create a point cloud from the RGBD image | |
| camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( | |
| rgb_image.width, | |
| rgb_image.height, | |
| fx=1.0, | |
| fy=1.0, | |
| cx=rgb_image.width / 2.0, | |
| cy=rgb_image.height / 2.0, | |
| ) | |
| pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
| rgbd_image, | |
| camera_intrinsic | |
| ) | |
| # Voxel downsample | |
| voxel_size = max(pcd.get_max_bound() - pcd.get_min_bound()) * voxel_size_factor | |
| voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=voxel_size) | |
| # Save the 3D model to a temporary file | |
| temp_dir = Path.cwd() / "temp_models" | |
| temp_dir.mkdir(exist_ok=True) | |
| model_path = temp_dir / "model.ply" | |
| o3d.io.write_voxel_grid(str(model_path), voxel_grid) | |
| return str(model_path) | |
| def generate_depth_and_3d(input_image_path, voxel_size_factor): | |
| image = Image.open(input_image_path).convert("RGB") | |
| resized_image = resize_image_with_aspect_ratio(image, 2688, 1680) | |
| depth_image, depth_array = estimate_depth(resized_image) | |
| model_path = create_3d_model(resized_image, depth_array, voxel_size_factor=voxel_size_factor) | |
| return depth_image, model_path | |
| def generate_depth_button_click(depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output): | |
| if depth_image_source == "Input Image": | |
| image_path = input_image | |
| elif depth_image_source == "Output Image": | |
| image_path = output_image | |
| elif depth_image_source == "Image with Margins": | |
| image_path = bordered_image_output | |
| else: | |
| image_path = overlay_image | |
| return generate_depth_and_3d(image_path, voxel_size_factor) |