Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import os | |
| import numpy as np | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import imageio | |
| import shutil | |
| from PIL import Image, ImageFilter | |
| from easydict import EasyDict as edict | |
| import utils.constants as constants | |
| from haishoku.haishoku import Haishoku | |
| from tqdm import tqdm | |
| from tempfile import NamedTemporaryFile | |
| import atexit | |
| import random | |
| import accelerate | |
| from transformers import AutoTokenizer, DPTImageProcessor, DPTForDepthEstimation | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| from pathlib import Path | |
| import logging | |
| #logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) | |
| import gc | |
| # Import functions from modules | |
| from utils.file_utils import cleanup_temp_files, get_file_parts | |
| from utils.color_utils import ( | |
| hex_to_rgb, | |
| detect_color_format, | |
| update_color_opacity, | |
| ) | |
| from utils.misc import ( | |
| get_filename, | |
| pause, | |
| convert_ratio_to_dimensions, | |
| update_dimensions_on_ratio, | |
| get_seed, | |
| get_output_name | |
| ) #install_cuda_toolkit,install_torch, _get_output, setup_runtime_env) | |
| from utils.image_utils import ( | |
| change_color, | |
| open_image, | |
| upscale_image, | |
| lerp_imagemath, | |
| shrink_and_paste_on_blank, | |
| show_lut, | |
| apply_lut_to_image_path, | |
| multiply_and_blend_images, | |
| alpha_composite_with_control, | |
| crop_and_resize_image, | |
| resize_and_crop_image, | |
| convert_to_rgba_png, | |
| resize_image_with_aspect_ratio, | |
| build_prerendered_images_by_quality, | |
| get_image_from_dict, | |
| calculate_optimal_fill_dimensions, | |
| save_image_to_temp_png | |
| ) | |
| from utils.hex_grid import ( | |
| generate_hexagon_grid, | |
| generate_hexagon_grid_interface, | |
| ) | |
| from utils.excluded_colors import ( | |
| add_color, | |
| delete_color, | |
| build_dataframe, | |
| on_input, | |
| excluded_color_list, | |
| on_color_display_select | |
| ) | |
| # from utils.ai_generator import ( | |
| # generate_ai_image, | |
| # ) | |
| from utils.lora_details import ( | |
| upd_prompt_notes, | |
| upd_prompt_notes_by_index, | |
| split_prompt_precisely, | |
| approximate_token_count, | |
| get_trigger_words, | |
| is_lora_loaded, | |
| get_lora_models | |
| ) | |
| from diffusers import ( | |
| FluxPipeline, | |
| FluxImg2ImgPipeline, | |
| FluxControlPipeline, | |
| FluxControlPipeline, | |
| DiffusionPipeline, | |
| AutoencoderTiny, | |
| AutoencoderKL | |
| ) | |
| PIPELINE_CLASSES = { | |
| "FluxPipeline": FluxPipeline, | |
| "FluxImg2ImgPipeline": FluxImg2ImgPipeline, | |
| "FluxControlPipeline": FluxControlPipeline, | |
| "FluxFillPipeline": FluxControlPipeline | |
| } | |
| from utils.version_info import ( | |
| versions_html, | |
| #initialize_cuda, | |
| #release_torch_resources, | |
| #get_torch_info | |
| ) | |
| #from utils.depth_estimation import (get_depth_map_from_state) | |
| input_image_palette = [] | |
| current_prerendered_image = gr.State("./images/Beeuty-1.png") | |
| user_dir = constants.TMPDIR | |
| lora_models = get_lora_models() | |
| selected_index = gr.State(value=-1) | |
| image_processor: Optional[DPTImageProcessor] = None | |
| depth_model: Optional[DPTForDepthEstimation] = None | |
| TRELLIS_PIPELINE: Optional[TrellisImageTo3DPipeline] = None | |
| pipe: Optional[Union[FluxPipeline, FluxImg2ImgPipeline, FluxControlPipeline]] = None | |
| def start_session(req: gr.Request): | |
| print(f"Starting session with hash: {req.session_hash}") | |
| user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| print(f"Ending session with hash: {req.session_hash}") | |
| user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
| shutil.rmtree(user_dir) | |
| # Register the cleanup function | |
| atexit.register(end_session) | |
| def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None): | |
| global input_image_palette | |
| try: | |
| # Load and process the input image | |
| input_image = Image.open(input_image_path).convert("RGBA") | |
| except Exception as e: | |
| print(f"Failed to convert image to RGBA: {e}") | |
| # Open the original image without conversion | |
| input_image = Image.open(input_image_path) | |
| # Ensure the canvas is at least 1344x768 pixels | |
| min_width, min_height = 1344, 768 | |
| canvas_width = max(min_width, input_image.width) | |
| canvas_height = max(min_height, input_image.height) | |
| # Create a transparent canvas with the required dimensions | |
| new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0)) | |
| # Calculate position to center the input image on the canvas | |
| paste_x = (canvas_width - input_image.width) // 2 | |
| paste_y = (canvas_height - input_image.height) // 2 | |
| # Paste the input image onto the canvas | |
| new_canvas.paste(input_image, (paste_x, paste_y)) | |
| # Save the 'RGBA' image to a temporary file and update 'input_image_path' | |
| with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: | |
| new_canvas.save(tmp_file.name, format="PNG") | |
| input_image_path = tmp_file.name | |
| constants.temp_files.append(tmp_file.name) | |
| # Update 'input_image' with the new image as a file path | |
| input_image = Image.open(input_image_path) | |
| # Use Haishoku to get the palette from the new image | |
| input_palette = Haishoku.loadHaishoku(input_image_path) | |
| input_image_palette = input_palette.palette | |
| # Update colors with opacity | |
| background_color = update_color_opacity( | |
| hex_to_rgb(background_color_hex), | |
| int(background_opacity * (255 / 100)) | |
| ) | |
| border_color = update_color_opacity( | |
| hex_to_rgb(border_color_hex), | |
| int(border_opacity * (255 / 100)) | |
| ) | |
| # Prepare excluded colors list | |
| excluded_color_list = [tuple(lst) for lst in excluded_colors_var] | |
| # Generate the hexagon grid images | |
| grid_image, overlay_image = generate_hexagon_grid_interface( | |
| hex_size, | |
| border_size, | |
| input_image, | |
| start_x, | |
| start_y, | |
| end_x, | |
| end_y, | |
| rotation, | |
| background_color, | |
| border_color, | |
| fill_hex, | |
| excluded_color_list, | |
| filter_color, | |
| x_spacing, | |
| y_spacing, | |
| add_hex_text_option, | |
| custom_text_list, | |
| custom_text_color_list | |
| ) | |
| _,_, name, _, new_ext = get_file_parts(input_image_path) | |
| grid_image_path = save_image_to_temp_png(grid_image, user_dir, "hexgrid_" + name) | |
| overlay_image_path = save_image_to_temp_png(overlay_image, user_dir, "overlay_" + name) | |
| return grid_image_path, overlay_image_path | |
| def get_model_and_lora(model_textbox): | |
| """ | |
| Determines the model and LoRA weights based on the model_textbox input. | |
| wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"] | |
| """ | |
| # If the input is in the list of models, return it with None as LoRA weights | |
| if model_textbox in constants.MODELS: | |
| return model_textbox, [] | |
| # If the input is in the list of LoRA weights, get the corresponding model | |
| elif model_textbox in constants.LORA_WEIGHTS: | |
| model = constants.LORA_TO_MODEL.get(model_textbox) | |
| return model, model_textbox.split() | |
| else: | |
| # Default to a known model if input is unrecognized | |
| default_model = model_textbox | |
| return default_model, [] | |
| def set_pipeline( | |
| model_name="black-forest-labs/FLUX.1-dev", | |
| lora_weights=None, | |
| pipeline_name="FluxPipeline", | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| global pipe | |
| pbar = tqdm(total=7, desc="Pipeline and Model Load") | |
| current_pipeline_name =pipe.name_or_path if pipe else None | |
| current_pipeline_class = type(pipe).__name__ if pipe else None | |
| if (current_pipeline_name != model_name) or (pipeline_name != current_pipeline_class): | |
| pipe = None | |
| gc.collect() | |
| #from torch import cuda, bfloat16, float32, Generator, no_grad, backends | |
| # Retrieve the pipeline class from the mapping | |
| pipeline_class = PIPELINE_CLASSES.get(pipeline_name) | |
| if not pipeline_class: | |
| raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. " | |
| f"Available options: {list(PIPELINE_CLASSES.keys())}") | |
| #initialize_cuda() | |
| dvc = "cpu" | |
| #from src.condition import Condition | |
| pbar.update(1) | |
| print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n") | |
| #print(f"\n {get_torch_info()}\n") | |
| # Initialize the pipeline inside the context manager | |
| pipe = pipeline_class.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.bfloat16 if device == "cuda" else torch.float16, | |
| vae=good_vae | |
| ) | |
| pbar.update(2) | |
| pipe.to(dvc) | |
| # Optionally, don't use CPU offload if not necessary | |
| pbar.update(1) | |
| # Access the tokenizer from the pipeline | |
| tokenizer = pipe.tokenizer | |
| # Check if add_prefix_space is set and convert to slow tokenizer if necessary | |
| if getattr(tokenizer, 'add_prefix_space', False): | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, device_map = 'cpu') | |
| # Update the pipeline's tokenizer | |
| pipe.tokenizer = tokenizer | |
| pbar.set_description("Loading LoRA weights") | |
| pbar.update(1) | |
| pipe.unload_lora_weights() | |
| # Load LoRA weights | |
| # note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125]) | |
| if lora_weights: | |
| for lora_weight in lora_weights: | |
| lora_configs = constants.LORA_DETAILS.get(lora_weight, []) | |
| lora_weight_set = False | |
| if lora_configs: | |
| for config in lora_configs: | |
| # Load LoRA weights with optional weight_name and adapter_name | |
| if 'weight_name' in config: | |
| weight_name = config.get("weight_name") | |
| adapter_name = config.get("adapter_name") | |
| lora_collection = config.get("lora_collection") | |
| if weight_name and adapter_name and lora_collection and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_collection, | |
| weight_name=weight_name, | |
| adapter_name=adapter_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") | |
| elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_collection, | |
| weight_name=weight_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") | |
| elif weight_name and adapter_name and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_weight, | |
| weight_name=weight_name, | |
| adapter_name=adapter_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
| elif weight_name and adapter_name==None and lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_weight, | |
| weight_name=weight_name, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
| elif lora_weight_set == False: | |
| pipe.load_lora_weights( | |
| lora_weight, | |
| token=constants.HF_API_TOKEN | |
| ) | |
| lora_weight_set = True | |
| print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
| # Apply 'pipe' configurations if present | |
| if 'pipe' in config: | |
| pipe_config = config['pipe'] | |
| for method_name, params in pipe_config.items(): | |
| method = getattr(pipe, method_name, None) | |
| if method: | |
| print(f"Applying pipe method: {method_name} with params: {params}") | |
| method(**params) | |
| else: | |
| print(f"Method {method_name} not found in pipe.") | |
| if 'condition_type' in config: | |
| condition_type = config['condition_type'] | |
| if condition_type == "coloring": | |
| #pipe.enable_coloring() | |
| print("\nEnabled coloring.\n") | |
| elif condition_type == "deblurring": | |
| #pipe.enable_deblurring() | |
| print("\nEnabled deblurring.\n") | |
| elif condition_type == "fill": | |
| #pipe.enable_fill() | |
| print("\nEnabled fill.\n") | |
| elif condition_type == "depth": | |
| #pipe.enable_depth() | |
| print("\nEnabled depth.\n") | |
| elif condition_type == "canny": | |
| #pipe.enable_canny() | |
| print("\nEnabled canny.\n") | |
| elif condition_type == "subject": | |
| #pipe.enable_subject() | |
| print("\nEnabled subject.\n") | |
| else: | |
| print(f"Condition type {condition_type} not implemented.") | |
| else: | |
| pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN) | |
| pbar.set_description("Pipe Loaded.") | |
| pbar.set_postfix({"Status": "Done"}) | |
| pbar.update(1) | |
| pbar.close() | |
| def generate_image_lowmem( | |
| text, | |
| neg_prompt=None, | |
| model_name="black-forest-labs/FLUX.1-dev", | |
| lora_weights=None, | |
| conditioned_image=None, | |
| mask_image=None, | |
| image_width=1368, | |
| image_height=848, | |
| guidance_scale=3.5, | |
| num_inference_steps=30, | |
| seed=0, | |
| true_cfg_scale=1.0, | |
| pipeline_name="FluxPipeline", | |
| strength=0.75, | |
| additional_parameters=None, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| with torch.no_grad(): | |
| #global pipe | |
| global device | |
| pipe.to(device) | |
| flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled() | |
| if flash_attention_enabled == False: | |
| #Enable xFormers memory-efficient attention (optional) | |
| #pipe.enable_xformers_memory_efficient_attention() | |
| print("\nEnabled xFormers memory-efficient attention.\n") | |
| else: | |
| pipe.attn_implementation="flash_attention_2" | |
| print("\nEnabled flash_attention_2.\n") | |
| # alternative version that may be more efficient | |
| # pipe.enable_sequential_cpu_offload() | |
| if pipeline_name == "FluxPipeline": | |
| pipe.enable_model_cpu_offload() | |
| pipe.vae.enable_slicing() | |
| #pipe.vae.enable_tiling() | |
| else: | |
| pipe.enable_model_cpu_offload() | |
| mask_parameters = {} | |
| # Load the mask image if provided | |
| if (pipeline_name == "FluxFillPipeline"): | |
| try: | |
| mask_image = open_image(mask_image).convert("RGBA") | |
| mask_condition_type = constants.condition_type[5] | |
| guidance_scale = 30 | |
| num_inference_steps=50 | |
| max_sequence_length=512 | |
| print(f"\nAdded mask image.\n {mask_image.size}") | |
| mask_parameters ={ | |
| "mask_image": mask_image, | |
| } | |
| except Exception as e: | |
| print(f"Error loading mask image: {e}") | |
| mask_image = None | |
| gr.Warning("Please sketch a mask image to use the Fill model.") | |
| raise Exception("Please sketch a mask image to use the Fill model.") | |
| # Set the random seed for reproducibility | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| #conditions = [] | |
| if conditioned_image is not None: | |
| conditioned_image = resize_and_crop_image(conditioned_image, image_width, image_height) | |
| #condition = Condition(constants.condition_type[2], conditioned_image) | |
| #conditions.append(condition) | |
| print(f"\nAdded conditioned image.\n {conditioned_image.size}") | |
| # Prepare the parameters for image generation | |
| additional_parameters ={ | |
| "strength": strength, | |
| "image": conditioned_image, | |
| } | |
| additional_parameters.update(mask_parameters) | |
| else: | |
| print("\nNo conditioned image provided.") | |
| if neg_prompt!=None: | |
| true_cfg_scale=1.1 | |
| additional_parameters ={ | |
| "negative_prompt": neg_prompt, | |
| "true_cfg_scale": true_cfg_scale, | |
| } | |
| # handle long prompts by splitting them | |
| if approximate_token_count(text) > 76: | |
| prompt, prompt2 = split_prompt_precisely(text) | |
| prompt_parameters = { | |
| "prompt" : prompt, | |
| "prompt_2": prompt2, | |
| } | |
| else: | |
| prompt_parameters = { | |
| "prompt" :text, | |
| } | |
| additional_parameters.update(prompt_parameters) | |
| # Combine all parameters | |
| generate_params = { | |
| "height": image_height, | |
| "width": image_width, | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": num_inference_steps, | |
| "generator": generator, | |
| } | |
| if additional_parameters: | |
| generate_params.update(additional_parameters) | |
| generate_params = {k: v for k, v in generate_params.items() if v is not None} | |
| print(f"generate_params: {generate_params}") | |
| # Generate the image | |
| try: | |
| result = pipe(**generate_params) #generate_image(pipe,generate_params) | |
| image = result.images[0] | |
| # Clean up | |
| del result | |
| except Exception as e: | |
| print(f"Error generating image: {e}") | |
| image = open_image("./images/Beeuty-1.png") | |
| #del conditions | |
| del generator | |
| # Move the pipeline and clear cache | |
| pipe.to("cpu") | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| print(torch.cuda.memory_summary(device=None, abbreviated=False)) | |
| gc.collect() | |
| return image | |
| def generate_ai_image_local ( | |
| map_option, | |
| prompt_textbox_value, | |
| neg_prompt_textbox_value, | |
| model="black-forest-labs/FLUX.1-dev", | |
| lora_weights=None, | |
| conditioned_image=None, | |
| mask_image=None, | |
| height=512, | |
| width=912, | |
| num_inference_steps=30, | |
| guidance_scale=3.5, | |
| seed=777, | |
| pipeline_name="FluxPipeline", | |
| strength=0.75, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| print(f"Generating image with lowmem") | |
| try: | |
| if map_option != "Prompt": | |
| prompt = constants.PROMPTS[map_option] | |
| negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "") | |
| else: | |
| prompt = prompt_textbox_value | |
| negative_prompt = neg_prompt_textbox_value or "" | |
| #full_prompt = f"{prompt} {negative_prompt}" | |
| additional_parameters = {} | |
| if lora_weights: | |
| for lora_weight in lora_weights: | |
| lora_configs = constants.LORA_DETAILS.get(lora_weight, []) | |
| for config in lora_configs: | |
| if 'parameters' in config: | |
| additional_parameters.update(config['parameters']) | |
| elif 'trigger_words' in config: | |
| trigger_words = get_trigger_words(lora_weight) | |
| prompt = f"{trigger_words} {prompt}" | |
| for key, value in additional_parameters.items(): | |
| if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']: | |
| additional_parameters[key] = int(value) | |
| elif key in ['guidance_scale','true_cfg_scale']: | |
| additional_parameters[key] = float(value) | |
| height = additional_parameters.pop('height', height) | |
| width = additional_parameters.pop('width', width) | |
| num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps) | |
| guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale) | |
| print("Generating image with the following parameters:\n") | |
| print(f"Model: {model}") | |
| print(f"LoRA Weights: {lora_weights}") | |
| print(f"Prompt: {prompt}") | |
| print(f"Neg Prompt: {negative_prompt}") | |
| print(f"Height: {height}") | |
| print(f"Width: {width}") | |
| print(f"Number of Inference Steps: {num_inference_steps}") | |
| print(f"Guidance Scale: {guidance_scale}") | |
| print(f"Seed: {seed}") | |
| print(f"Additional Parameters: {additional_parameters}") | |
| print(f"Conditioned Image: {conditioned_image}") | |
| print(f"Conditioned Image Strength: {strength}") | |
| print(f"pipeline: {pipeline_name}") | |
| set_pipeline( | |
| model_name=model, | |
| lora_weights=lora_weights, | |
| pipeline_name=pipeline_name, | |
| progress=progress | |
| ) | |
| image = generate_image_lowmem( | |
| text=prompt, | |
| model_name=model, | |
| neg_prompt=negative_prompt, | |
| lora_weights=lora_weights, | |
| conditioned_image=conditioned_image, | |
| mask_image=mask_image, | |
| image_width=width, | |
| image_height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| seed=seed, | |
| pipeline_name=pipeline_name, | |
| strength=strength, | |
| additional_parameters=additional_parameters, | |
| progress=progress | |
| ) | |
| with NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| image.save(tmp.name, format="PNG") | |
| constants.temp_files.append(tmp.name) | |
| print(f"Image saved to {tmp.name}") | |
| return tmp.name | |
| except Exception as e: | |
| print(f"Error generating AI image: {e}") | |
| gc.collect() | |
| return None | |
| def generate_input_image_click(image_input, map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, mask_image=None, strength=0.5, image_format="16:9", scale_factor=constants.SCALE_FACTOR, progress=gr.Progress(track_tqdm=True)): | |
| seed = get_seed(randomize_seed, seed) | |
| # Get the model and LoRA weights | |
| model, lora_weights = get_model_and_lora(model_textbox_value) | |
| global current_prerendered_image | |
| conditioned_image=None | |
| formatted_map_option = map_option.lower().replace(' ', '_') | |
| if use_conditioned_image: | |
| print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n") | |
| # ensure the conditioned image is an image and not a string, cannot use RGBA | |
| if isinstance(current_prerendered_image.value, str): | |
| conditioned_image = open_image(current_prerendered_image.value).convert("RGB") | |
| print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n") | |
| # use image_input as the conditioned_image if it is not None | |
| elif image_input is not None: | |
| file_path, is_dict = get_image_from_dict(image_input) | |
| conditioned_image = open_image(file_path).convert("RGB") | |
| print(f"Conditioned Image set to modify Input Image!\nClear to generate new image from layered image: {is_dict}\n") | |
| gr.Info(f"Conditioned Image set to modify Input Image! Clear to generate new image. Layered: {is_dict}",duration=5) | |
| # Convert image_format from a string split by ":" into two numbers divided | |
| width_ratio, height_ratio = map(int, image_format.split(":")) | |
| aspect_ratio = width_ratio / height_ratio | |
| width, height = convert_ratio_to_dimensions(aspect_ratio, constants.BASE_HEIGHT) | |
| pipeline = "FluxPipeline" | |
| if conditioned_image is not None: | |
| pipeline = "FluxImg2ImgPipeline" | |
| if (model == "black-forest-labs/FLUX.1-Fill-dev"): | |
| pipeline = "FluxFillPipeline" | |
| width, height = calculate_optimal_fill_dimensions(conditioned_image) | |
| mask_image = get_image_from_dict(mask_image) | |
| print(f"Optimal Dimensions: {width} x {height} \n") | |
| else: | |
| mask_image = None | |
| # Generate the AI image and get the image path | |
| image_path = generate_ai_image_local( | |
| map_option, | |
| prompt_textbox_value, | |
| negative_prompt_textbox_value, | |
| model, | |
| lora_weights, | |
| conditioned_image, | |
| mask_image, | |
| strength=strength, | |
| height=height, | |
| width=width, | |
| seed=seed, | |
| pipeline_name=pipeline, | |
| ) | |
| # Open the generated image | |
| try: | |
| image = Image.open(image_path).convert("RGBA") | |
| except Exception as e: | |
| print(f"Failed to open generated image: {e}") | |
| return image_path, seed # Return the original image path if opening fails | |
| # Upscale the image | |
| upscaled_image = upscale_image(image, scale_factor) | |
| # Save the upscaled image to a temporary file | |
| with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled: | |
| upscaled_image.save(tmp_upscaled.name, format="PNG") | |
| constants.temp_files.append(tmp_upscaled.name) | |
| print(f"Upscaled image saved to {tmp_upscaled.name}") | |
| gc.collect() | |
| # Return the path of the upscaled image | |
| return tmp_upscaled.name, seed | |
| def update_prompt_visibility(map_option): | |
| is_visible = (map_option == "Prompt") | |
| return ( | |
| gr.update(visible=is_visible), | |
| gr.update(visible=is_visible), | |
| gr.update(visible=is_visible) | |
| ) | |
| def update_prompt_notes(model_textbox_value): | |
| return upd_prompt_notes(model_textbox_value) | |
| def update_selection(evt: gr.SelectData, aspect_ratio): | |
| selected_lora = constants.LORAS[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| new_aspect_ratio = aspect_ratio # default to the currently selected aspect ratio | |
| lora_repo = selected_lora["repo"] | |
| #updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" | |
| # If the selected LoRA model specifies an aspect ratio, use it to update dimensions. | |
| if "aspect" in selected_lora: | |
| try: | |
| new_aspect_ratio = selected_lora["aspect"] | |
| # Recalculate dimensions using constants.BASE_HEIGHT as the height reference. | |
| new_width, new_height = update_dimensions_on_ratio(new_aspect_ratio, constants.BASE_HEIGHT) | |
| # (Optionally, you could log or use new_width/new_height as needed) | |
| except Exception as e: | |
| print(f"\nError in update selection aspect ratios: {e}\nSkipping") | |
| return [gr.update(value=lora_repo), gr.update(visible=(lora_repo == "Manual Entry")), evt.index, new_aspect_ratio, upd_prompt_notes_by_index(evt.index)] | |
| def on_prerendered_gallery_selection(event_data: gr.SelectData): | |
| global current_prerendered_image | |
| selected_index = event_data.index | |
| selected_image = constants.pre_rendered_maps_paths[selected_index] | |
| print(f"Template Image Selected: {selected_image} ({event_data.index})\n") | |
| gr.Info(f"Template Image Selected: {selected_image} ({event_data.index})",duration=5) | |
| current_prerendered_image.value = selected_image | |
| return current_prerendered_image | |
| def combine_images_with_lerp(input_image, output_image, alpha): | |
| directory, _, name,_, new_ext = get_file_parts(input_image) | |
| in_image = open_image(input_image) | |
| out_image = open_image(output_image) | |
| print(f"Combining images with alpha: {alpha}") | |
| return save_image_to_temp_png(lerp_imagemath(in_image, out_image, alpha), user_dir, f"lerp_{str(alpha)}" + name) | |
| def add_border(image, mask_width, mask_height, blank_color): | |
| bordered_image_output = Image.open(image).convert("RGBA") | |
| margin_color = detect_color_format(blank_color) | |
| print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}") | |
| return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color) | |
| def on_input_image_change(image_path): | |
| if image_path is None: | |
| gr.Warning("Please upload an Input Image to get started.") | |
| return None, gr.update() | |
| img, img_path = convert_to_rgba_png(image_path) | |
| width, height = img.size | |
| return [img_path, gr.update(width=width, height=height)] | |
| def update_sketch_dimensions(input_image, sketch_image): | |
| # Load the images using open_image() if they are provided as file paths. | |
| in_img = open_image(input_image) if isinstance(input_image, str) else input_image | |
| sk_img_path, _ = get_image_from_dict(sketch_image) | |
| sk_img = open_image(sk_img_path) | |
| # Resize sketch image if dimensions don't match input image. | |
| if (in_img) and (in_img.size != sk_img.size): | |
| sk_img = sk_img.resize(in_img.size, Image.LANCZOS) | |
| return [sk_img, gr.update(width=in_img.width, height=in_img.height)] | |
| else: | |
| return [sk_img, gr.update()] | |
| def composite_with_control_sync(input_image, sketch_image, slider_value): | |
| # Load the images using open_image() if they are provided as file paths. | |
| in_img = open_image(input_image) if isinstance(input_image, str) else input_image | |
| sk_img_path, _ = get_image_from_dict(sketch_image) | |
| sk_img = open_image(sk_img_path) | |
| # Resize sketch image if dimensions don't match input image. | |
| if in_img.size != sk_img.size: | |
| sk_img = sk_img.resize(in_img.size, Image.LANCZOS) | |
| # Now composite using the original alpha_composite_with_control function. | |
| result_img = alpha_composite_with_control(in_img, sk_img, slider_value) | |
| return result_img | |
| def replace_input_with_sketch_image(sketch_image): | |
| print(f"Sketch Image: {sketch_image}\n") | |
| sketch, is_dict = get_image_from_dict(sketch_image) | |
| return sketch | |
| ####################################### DEPTH ESTIMATION ####################################### | |
| def load_trellis_model(): | |
| gr.Info("TRELLIS_PIPELINE load start", 60) | |
| global TRELLIS_PIPELINE | |
| loaded = False | |
| if TRELLIS_PIPELINE == None: | |
| try: | |
| TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
| TRELLIS_PIPELINE.cuda() | |
| # Preload with a dummy image to finalize initialization | |
| try: | |
| TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((512, 512, 4), dtype=np.uint8))) # Preload rembg | |
| except: | |
| pass | |
| print("TRELLIS_PIPELINE loaded\n") | |
| gr.Info("TRELLIS_PIPELINE loaded") | |
| loaded = True | |
| except Exception as e: | |
| print(f"Error preloading TRELLIS_PIPELINE: {e}") | |
| gr.Error(f"Failed to load TRELLIS_PIPELINE: {e}") | |
| TRELLIS_PIPELINE = None | |
| else: | |
| loaded = True | |
| print("TRELLIS_PIPELINE already loaded\n") | |
| def load_3d_models(is_open: bool = True) -> bool: | |
| if is_open: | |
| gr.Info("Loading 3D models...") | |
| global image_processor, depth_model | |
| image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
| depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True) | |
| print("DPT models loaded\n") | |
| if not constants.IS_SHARED_SPACE: | |
| load_trellis_model() | |
| print("3D models loaded") | |
| gr.Info("3D models loaded.") | |
| return gr.update(interactive = is_open) | |
| def unload_3d_models(is_open: bool = False) -> bool: | |
| if not is_open: | |
| gr.Info("Unloading 3D models...") | |
| global image_processor, depth_model, TRELLIS_PIPELINE | |
| if not constants.IS_SHARED_SPACE: | |
| if TRELLIS_PIPELINE: | |
| TRELLIS_PIPELINE.cpu() | |
| TRELLIS_PIPELINE = None | |
| if depth_model: | |
| del image_processor | |
| del depth_model | |
| # torch.cuda.empty_cache() | |
| # torch.cuda.ipc_collect() | |
| gc.collect() | |
| print("3D models unloaded and CUDA memory freed") | |
| gr.Info("3D models unloaded.") | |
| return gr.update(interactive = is_open) | |
| def preprocess_image(image: Image.Image) -> Image.Image: | |
| """ | |
| Preprocess the input image. | |
| Args: | |
| image (Image.Image): The input image. | |
| Returns: | |
| Image.Image: The preprocessed image. | |
| """ | |
| processed_image = TRELLIS_PIPELINE.preprocess_image(image) | |
| return processed_image | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult, name: str) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| 'name': name | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| name = state['name'] | |
| return gs, mesh, name | |
| def depth_process_image(image_path, resized_width=800, z_scale=208): | |
| """ | |
| Processes the input image to generate a depth map. | |
| Args: | |
| image_path (str): The file path to the input image. | |
| resized_width (int, optional): The width to which the image is resized. Defaults to 800. | |
| z_scale (int, optional): Z-axis scale factor. Defaults to 208. | |
| Returns: | |
| list: A list containing the depth image. | |
| """ | |
| image_path = Path(image_path) | |
| if not image_path.exists(): | |
| raise ValueError("Image file not found") | |
| # Load and resize the image | |
| image_raw = Image.open(image_path).convert("RGB") | |
| print(f"Original size: {image_raw.size}") | |
| resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0]) | |
| image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS) | |
| print(f"Resized size: {image.size}") | |
| # Prepare image for the model | |
| encoding = image_processor(image, return_tensors="pt") | |
| # Perform depth estimation | |
| with torch.no_grad(): | |
| outputs = depth_model(**encoding) | |
| predicted_depth = outputs.predicted_depth | |
| # Interpolate depth to match the image size | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=(image.height, image.width), | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze() | |
| # Normalize the depth image to 8-bit | |
| if torch.cuda.is_available(): | |
| prediction = prediction.numpy() | |
| else: | |
| prediction = prediction.cpu().numpy() | |
| depth_min, depth_max = prediction.min(), prediction.max() | |
| depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8") | |
| img = Image.fromarray(depth_image) | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| return img | |
| def generate_3d_asset_part1(depth_image_source, randomize_seed, seed, input_image, output_image, overlay_image, bordered_image_output, req: gr.Request, progress=gr.Progress(track_tqdm=True)): | |
| # Choose the image based on source | |
| if depth_image_source == "Input Image": | |
| image_path = input_image | |
| elif depth_image_source == "Output Image": | |
| image_path = output_image | |
| elif depth_image_source == "Image with Margins": | |
| image_path = bordered_image_output | |
| else: # "Overlay Image" | |
| image_path = overlay_image | |
| output_name = get_output_name(input_image, output_image, overlay_image, bordered_image_output) | |
| # Ensure the file exists | |
| if not Path(image_path).exists(): | |
| raise ValueError("Image file not found.") | |
| # Determine the final seed using default MAX_SEED from constants | |
| final_seed = np.random.randint(0, constants.MAX_SEED) if randomize_seed else seed | |
| # Process the image for depth estimation | |
| depth_img = depth_process_image(image_path, resized_width=1536, z_scale=336) | |
| depth_img = resize_image_with_aspect_ratio(depth_img, 1536, 1536) | |
| user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
| depth_img = save_image_to_temp_png(depth_img, user_dir, f"{output_name}_depth") | |
| return depth_img, image_path, output_name, final_seed | |
| def generate_3d_asset_part2(depth_img, image_path, output_name, seed, steps, model_resolution, video_resolution, req: gr.Request, progress=gr.Progress(track_tqdm=True)): | |
| # Open image using standardized defaults | |
| image_raw = Image.open(image_path).convert("RGB") | |
| resized_image = resize_image_with_aspect_ratio(image_raw, model_resolution, model_resolution) | |
| depth_img = Image.open(depth_img).convert("RGBA") | |
| if TRELLIS_PIPELINE is None: | |
| gr.Warning(f"Trellis Pipeline is not initialized: {TRELLIS_PIPELINE.device()}") | |
| return [None, None, depth_img] | |
| else: | |
| # Preprocess and run the Trellis pipeline with fixed sampler settings | |
| try: | |
| TRELLIS_PIPELINE.cuda() | |
| processed_image = TRELLIS_PIPELINE.preprocess_image(resized_image, max_resolution=model_resolution) | |
| outputs = TRELLIS_PIPELINE.run( | |
| processed_image, | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": steps, | |
| "cfg_strength": 7.5, | |
| }, | |
| slat_sampler_params={ | |
| "steps": steps, | |
| "cfg_strength": 3.0, | |
| }, | |
| ) | |
| # Validate the mesh | |
| mesh = outputs['mesh'][0] | |
| meshisdict = isinstance(mesh, dict) | |
| if meshisdict: | |
| vertices = mesh['vertices'] | |
| faces = mesh['faces'] | |
| else: | |
| vertices = mesh.vertices | |
| faces = mesh.faces | |
| print(f"Mesh vertices: {vertices.shape}, faces: {faces.shape}") | |
| if faces.max() >= vertices.shape[0]: | |
| raise ValueError(f"Invalid mesh: face index {faces.max()} exceeds vertex count {vertices.shape[0]}") | |
| except Exception as e: | |
| gr.Warning(f"Error generating 3D asset: {e}") | |
| print(f"Error generating 3D asset: {e}") | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| return None,None, depth_img | |
| # Ensure data is on GPU and has correct type | |
| if not vertices.is_cuda or not faces.is_cuda: | |
| raise ValueError("Mesh data must be on GPU") | |
| if vertices.dtype != torch.float32 or faces.dtype != torch.int32: | |
| if meshisdict: | |
| mesh['faces'] = faces.to(torch.int32) | |
| mesh['vertices'] = vertices.to(torch.float32) | |
| else: | |
| mesh.faces = faces.to(torch.int32) | |
| mesh.vertices = vertices.to(torch.float32) | |
| user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| video = render_utils.render_video(outputs['gaussian'][0], resolution=video_resolution, num_frames=64, r=1, fov=45)['color'] | |
| try: | |
| video_geo = render_utils.render_video(outputs['mesh'][0], resolution=video_resolution, num_frames=64, r=1, fov=45)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| except Exception as e: | |
| gr.Info(f"Error rendering video: {e}") | |
| print(f"Error rendering video: {e}") | |
| video_path = os.path.join(user_dir, f'{output_name}.mp4') | |
| imageio.mimsave(video_path, video, fps=8) | |
| #snapshot_results = render_utils.render_snapshot_depth(outputs['mesh'][0], resolution=1280, r=1, fov=80) | |
| #depth_snapshot = Image.fromarray(snapshot_results['normal'][0]).convert("L") | |
| depth_snapshot = depth_img | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], output_name) | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| return [state, video_path, depth_snapshot] | |
| def extract_glb( | |
| state: dict, | |
| mesh_simplify: float, | |
| texture_size: int, | |
| req: gr.Request,progress=gr.Progress(track_tqdm=True) | |
| ) -> Tuple[str, str]: | |
| """ | |
| Extract a GLB file from the 3D model. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| mesh_simplify (float): The mesh simplification factor. | |
| texture_size (int): The texture resolution. | |
| Returns: | |
| str: The path to the extracted GLB file. | |
| """ | |
| user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
| gs, mesh, name = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, f'{name}.glb') | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| return glb_path, glb_path | |
| def extract_gaussian(state: dict, req: gr.Request, progress=gr.Progress(track_tqdm=True)) -> Tuple[str, str]: | |
| """ | |
| Extract a Gaussian file from the 3D model. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| Returns: | |
| str: The path to the extracted Gaussian file. | |
| """ | |
| user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
| gs, _, name = unpack_state(state) | |
| gaussian_path = os.path.join(user_dir, f'{name}.ply') | |
| gs.save_ply(gaussian_path) | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| return gaussian_path, gaussian_path | |
| def getVersions(): | |
| return versions_html() | |
| #generate_input_image_click.zerogpu = True | |
| #generate_depth_button_click.zerogpu = True | |
| #def main(debug=False): | |
| title = "HexaGrid Creator" | |
| #description = "Customizable Hexagon Grid Image Generator" | |
| examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]] | |
| gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/","assets/"]) | |
| # Gradio Blocks Interface | |
| with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',delete_cache=(21600,86400)) as hexaGrid: | |
| with gr.Row(): | |
| gr.Markdown(""" | |
| # HexaGrid Creator | |
| ## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro") | |
| with gr.Row(): | |
| with gr.Accordion("Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"): | |
| gr.Markdown (""" | |
| ## Drop an image into the Input Image and get started! | |
| ## What is HexaGrid Creator? | |
| HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles! | |
| ### What Can You Do? | |
| - **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters. | |
| - **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them. | |
| - **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look. | |
| - **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time. | |
| - **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization. | |
| - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
| - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
| - **Add Margins:** Add customizable margins around your images for a polished finish. | |
| ### Why You'll Love It | |
| - **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun! | |
| - **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways. | |
| - **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢ | |
| - **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization. | |
| ### Get Started | |
| 1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool. | |
| 2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay. | |
| 3. **Download and Share:** Once you're happy with your creation, download it and share it with the world! | |
| ### Advanced Features | |
| - **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images. | |
| - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
| - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
| - **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization. | |
| - **Add Margins:** Customize margins around your images for a polished finish. | |
| Join the hive and start creating with HexaGrid Creator today! | |
| """, elem_classes="intro") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="filepath", | |
| interactive=True, | |
| elem_classes="centered solid imgcontainer", | |
| key="imgInput", | |
| image_mode=None, | |
| format="PNG", | |
| height=450, | |
| width=800 | |
| ) | |
| with gr.Accordion("Sketch Pad", open = False, elem_id="sketchpd"): | |
| with gr.Row(): | |
| sketch_image = gr.Sketchpad( | |
| label="Sketch Image", | |
| type="filepath", | |
| #invert_colors=True, | |
| #sources=['upload','canvas'], | |
| #tool=['editor','select','color-sketch'], | |
| placeholder="Draw a sketch or upload an image.", | |
| interactive=True, | |
| elem_classes="centered solid imgcontainer", | |
| key="imgSketch", | |
| image_mode="RGBA", | |
| format="PNG", | |
| brush=gr.Brush(), | |
| canvas_size=(640,360) | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| sketch_replace_input_image_button = gr.Button("Replace Input Image with sketch", elem_id="sketch_replace_input_image_button", elem_classes="solid") | |
| sketch_alpha_composite_slider = gr.Slider(0,100,50,0.5, label="Sketch Transparancy", elem_id="alpha_composite_slider") | |
| btn_sketch_alpha_composite = gr.Button("Overlay Sketch on Input Image", elem_id="btn_sketchninput", elem_classes="solid") | |
| gr.Markdown("### Do Not add to image if using a fill model") | |
| with gr.Column(scale=1): | |
| with gr.Accordion("Hex Coloring and Exclusion", open = False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050") | |
| with gr.Column(): | |
| filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,) | |
| fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True) | |
| exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid") | |
| color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered") | |
| selected_row = gr.Number(0, label="Selected Row", visible=False) | |
| delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid") | |
| with gr.Accordion("Image Filters", open = False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| lut_filename = gr.Textbox( | |
| value="", | |
| label="Look Up Table (LUT) File Name", | |
| elem_id="lutFileName") | |
| with gr.Column(): | |
| lut_file = gr.File( | |
| value=None, | |
| file_count="single", | |
| file_types=[".cube"], | |
| type="filepath", | |
| label="LUT cube File", | |
| height=120) | |
| with gr.Row(): | |
| lut_intensity = gr.Slider(label="Filter Intensity", minimum=-200, maximum=200, value=100, info="0 none, negative inverts the filter", interactive=True) | |
| apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button") | |
| with gr.Row(): | |
| lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown(""" | |
| ### Included Filters (LUTs) | |
| Try on Example Image then APPLY FILTER to Input Image. | |
| *-none.cube files are placebo controls | |
| """, elem_id="lut_markdown") | |
| with gr.Column(): | |
| gr.Examples(elem_id="lut_examples", | |
| examples=[[f] for f in constants.lut_files], | |
| inputs=[lut_filename], | |
| outputs=[lut_filename], | |
| label="Select a Filter (LUT) file to populate the LUT File Name field", | |
| examples_per_page = 25, | |
| ) | |
| lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename]) | |
| lut_filename.change(show_lut, inputs=[lut_filename, input_image, lut_intensity], outputs=[lut_example_image], scroll_to_output=True) | |
| lut_intensity.change(show_lut, inputs=[lut_filename, input_image, lut_intensity], outputs=[lut_example_image]) | |
| apply_lut_button.click( | |
| lambda lut_filename, input_image, lut_intensity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image, lut_intensity)[1], | |
| inputs=[lut_filename, input_image, lut_intensity], | |
| outputs=[input_image], | |
| scroll_to_output=True | |
| ) | |
| with gr.Accordion("Color Composite", open = False): | |
| with gr.Row(): | |
| composite_color = gr.ColorPicker(label="Color", value="#ede9ac44") | |
| composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True) | |
| with gr.Row(): | |
| composite_button = gr.Button("Composite", elem_classes="solid") | |
| with gr.Row(): | |
| with gr.Accordion("Generate AI Image (click here for options)", open = False): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| generate_input_image = gr.Button( | |
| "Generate from Input Image & Options ", | |
| elem_id="generate_input_image", | |
| elem_classes="solid" | |
| ) | |
| # model_options = gr.Dropdown( | |
| # label="Choose an AI Model*", | |
| # choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"], | |
| # value="Cossale/Frames2-Flex.1", | |
| # elem_classes="solid" | |
| # ) | |
| model_textbox = gr.Textbox( | |
| label="LORA/Model", | |
| value="Cossale/Frames2-Flex.1", | |
| elem_classes="solid", | |
| elem_id="inference_model", | |
| lines=2, | |
| visible=False | |
| ) | |
| with gr.Accordion("Choose Image Style*", open=True): | |
| lora_gallery = gr.Gallery( | |
| [(open_image(image_path), title) for image_path, title in lora_models], | |
| label="Styles", | |
| allow_preview=False, preview=False , | |
| columns=2, | |
| elem_id="lora_gallery", | |
| show_share_button=False, | |
| elem_classes="solid", type="filepath", | |
| object_fit="contain", height="auto", format="png", | |
| ) | |
| # Update map_options to a Dropdown with choices from constants.PROMPTS keys | |
| with gr.Row(): | |
| with gr.Column(): | |
| map_options = gr.Dropdown( | |
| label="Map Options*", | |
| choices=list(constants.PROMPTS.keys()), | |
| value="Alien Landscape", | |
| elem_classes="solid", | |
| scale=0 | |
| ) | |
| # Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1 | |
| # The values of height and width are based on common resolutions for each aspect ratio | |
| # Default to 16x9, 912x512 | |
| image_size_ratio = gr.Dropdown(label="Image Aspect Ratio", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True) | |
| with gr.Column(): | |
| seed_slider = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=constants.MAX_SEED, | |
| step=1, | |
| value=0, | |
| scale=0, randomize=True, elem_id="rnd_seed" | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=False, scale=0, interactive=True) | |
| prompt_textbox = gr.Textbox( | |
| label="Prompt", | |
| visible=False, | |
| elem_classes="solid", | |
| value="Planetary overhead view, directly from above, centered on the planet’s surface, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), looking straight down.", | |
| lines=4 | |
| ) | |
| negative_prompt_textbox = gr.Textbox( | |
| label="Negative Prompt", | |
| visible=False, | |
| elem_classes="solid", | |
| value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text" | |
| ) | |
| prompt_notes_label = gr.Label( | |
| "You should use FRM$ as trigger words. @1.5 minutes", | |
| elem_classes="solid centered small", | |
| show_label=False, | |
| visible=False | |
| ) | |
| # Keep the change event to maintain functionality | |
| map_options.change( | |
| fn=update_prompt_visibility, | |
| inputs=[map_options], | |
| outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label] | |
| ) | |
| with gr.Column(scale=2): | |
| with gr.Row(): | |
| with gr.Column(): | |
| generate_input_image_from_gallery = gr.Button( | |
| "Generate AI Image from Template Options", | |
| elem_id="generate_input_image_from_gallery", | |
| elem_classes="solid" | |
| ) | |
| with gr.Column(): | |
| replace_input_image_button = gr.Button( | |
| "Replace Input Image with Template", | |
| elem_id="prerendered_replace_input_image_button", | |
| elem_classes="solid" | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("Template Images", open = False): | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| # Gallery from PRE_RENDERED_IMAGES GOES HERE | |
| prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images_by_quality(3,'thumbnail'), elem_id="gallery", | |
| elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False) | |
| with gr.Row(): | |
| image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", info="applies to Input, Sketch and Template Image",minimum=0, maximum=1.0, value=0.85, step=0.01, interactive=True) | |
| with gr.Accordion("Advanced Hexagon Settings", open = False): | |
| with gr.Row(): | |
| start_x = gr.Number(label="Start X", value=20, minimum=-512, maximum= 512, precision=0) | |
| start_y = gr.Number(label="Start Y", value=20, minimum=-512, maximum= 512, precision=0) | |
| end_x = gr.Number(label="End X", value=-20, minimum=-512, maximum= 512, precision=0) | |
| end_y = gr.Number(label="End Y", value=-20, minimum=-512, maximum= 512, precision=0) | |
| with gr.Row(): | |
| x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-8, minimum=-200, maximum=200, precision=1) | |
| y_spacing = gr.Number(label="Adjust Vertical spacing", value=3, minimum=-200, maximum=200, precision=1) | |
| with gr.Row(): | |
| rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)") | |
| add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Column-Row Coordinates", "Column(Letter)-Row Coordinates", "Column-Row(Letter) Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None) | |
| with gr.Row(): | |
| custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,) | |
| custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False) | |
| with gr.Row(): | |
| hex_text_info = gr.Markdown(""" | |
| ### Text Color uses the Border Color and Border Opacity, unless you use a custom list. | |
| ### The Custom Text List and Custom Text Color List are repeating comma separated lists. | |
| ### The custom color list is a comma separated list of hex colors. | |
| #### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue" | |
| """, elem_id="hex_text_info", visible=False) | |
| add_hex_text.change( | |
| fn=lambda x: ( | |
| gr.update(visible=(x == "Custom List")), | |
| gr.update(visible=(x == "Custom List")), | |
| gr.update(visible=(x != None)) | |
| ), | |
| inputs=add_hex_text, | |
| outputs=[custom_text_list, custom_text_color_list, hex_text_info] | |
| ) | |
| with gr.Row(): | |
| hex_size = gr.Number(label="Hexagon Size", value=90, minimum=1, maximum=768) | |
| border_size = gr.Slider(-5,25,value=2,step=1,label="Border Size") | |
| with gr.Row(): | |
| background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True) | |
| background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %") | |
| border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True) | |
| border_opacity = gr.Slider(0,100,50,1,label="Border Opacity %") | |
| with gr.Row(): | |
| hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate") | |
| with gr.Row(): | |
| output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput",interactive=True) | |
| overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay",interactive=True) | |
| with gr.Row(): | |
| output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Multiply Intensity*") | |
| output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity") | |
| output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity") | |
| with gr.Accordion("Add Margins (bleed)", open=False): | |
| with gr.Row(): | |
| border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image") | |
| with gr.Row(): | |
| mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0) | |
| mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0) | |
| with gr.Row(): | |
| margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True) | |
| margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %") | |
| with gr.Row(): | |
| add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary") | |
| with gr.Row(): | |
| bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True) | |
| accordian_3d = gr.Accordion("Height Maps and 3D", open=False, elem_id="accordian_3d") | |
| with accordian_3d: | |
| with gr.Row(): | |
| depth_image_source = gr.Radio( | |
| label="Depth Image Source", | |
| choices=["Input Image", "Hexagon Grid Image", "Overlay Image", "Image with Margins"], | |
| value="Input Image" | |
| ) | |
| with gr.Accordion("Advanced 3D Generation Settings", open=False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| # Use standard seed settings only | |
| seed_3d = gr.Slider(0, constants.MAX_SEED, label="Seed (3D Generation)", value=0, step=1, randomize=True) | |
| randomize_seed_3d = gr.Checkbox(label="Randomize Seed (3D Generation)", value=True) | |
| with gr.Column(): | |
| steps = gr.Slider(6, 36, value=12, step=1, label="Image Sampling Steps", interactive=True) | |
| video_resolution = gr.Slider(384, 768, value=480, step=32, label="Video Resolution (*danger*)", interactive=True) | |
| model_resolution = gr.Slider(512, 2304, value=1024, step=64, label="3D Model Resolution", interactive=True) | |
| with gr.Row(): | |
| generate_3d_asset_button = gr.Button("Generate 3D Asset", elem_classes="solid", variant="secondary", interactive=False) | |
| with gr.Row(): | |
| depth_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="DepthOutput",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True, height=400) | |
| with gr.Row(): | |
| # For display: video output and 3D model preview (GLTF) | |
| video_output = gr.Video(label="3D Asset Video", autoplay=True, loop=True, height=400) | |
| with gr.Accordion("GLB Extraction Settings", open=False): | |
| with gr.Row(): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| with gr.Row(): | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| extract_gaussian_btn = gr.Button("Extract Gaussian", interactive=False) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| model_output = gr.Model3D(label="Extracted 3D Model", clear_color=[1.0, 1.0, 1.0, 1.0], | |
| elem_classes="centered solid imgcontainer", interactive=True) | |
| with gr.Column(scale=1): | |
| glb_file = gr.File(label="3D GLTF", elem_classes="solid small centered", height=250) | |
| gaussian_file = gr.File(label="Gaussian", elem_classes="solid small centered", height=250) | |
| gr.Markdown(""" | |
| ### Files over 10 MB may not display in the 3D model viewer | |
| """, elem_id="file_size_info", elem_classes="intro" ) | |
| is_multiimage = gr.State(False) | |
| output_buf = gr.State() | |
| ddd_image_path = gr.State("./images/images/Beeuty-1.png") | |
| ddd_file_name = gr.State("Hexagon_file") | |
| with gr.Row(): | |
| gr.Examples(examples=[ | |
| ["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15], | |
| ["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75], | |
| ["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50], | |
| ["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5], | |
| ["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0], | |
| ], | |
| inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity], | |
| elem_id="examples") | |
| # with gr.Row(): | |
| # login_button = gr.LoginButton(size="sm", elem_classes="solid centered", elem_id="hf_login_btn") | |
| with gr.Row(): | |
| gr.HTML(value=getVersions(), visible=True, elem_id="versions") | |
| # Handlers | |
| hexaGrid.load(start_session) | |
| hexaGrid.unload(end_session) | |
| color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row]) | |
| color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)]) | |
| delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display]) | |
| exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)]) | |
| hex_button.click( | |
| fn=lambda hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list: | |
| gr.Warning("Please upload an Input Image to get started.") if input_image is None else hex_create(hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list), | |
| inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list], | |
| outputs=[output_image, overlay_image], | |
| scroll_to_output=True | |
| ) | |
| generate_input_image.click( | |
| fn=unload_3d_models, | |
| trigger_mode="always_last", | |
| outputs=[generate_3d_asset_button] | |
| ).then( | |
| fn=generate_input_image_click, | |
| inputs=[input_image,map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), sketch_image, image_guidance_stength, image_size_ratio], | |
| outputs=[input_image, seed_slider], scroll_to_output=True | |
| ).then( | |
| fn=update_sketch_dimensions, | |
| inputs=[input_image, sketch_image], | |
| outputs=[sketch_image, sketch_image] | |
| ) | |
| input_image.input( | |
| fn=on_input_image_change, | |
| inputs=[input_image], | |
| outputs=[input_image,sketch_image], scroll_to_output=True, | |
| ) | |
| ###################### sketchpad ############################ | |
| btn_sketch_alpha_composite.click( | |
| fn=composite_with_control_sync, | |
| inputs=[input_image, sketch_image, sketch_alpha_composite_slider], | |
| outputs=[input_image], | |
| scroll_to_output=True | |
| ) | |
| sketch_replace_input_image_button.click( | |
| lambda sketch_image: replace_input_with_sketch_image(sketch_image), | |
| inputs=[sketch_image], | |
| outputs=[input_image], scroll_to_output=True | |
| ) | |
| ##################### model ####################################### | |
| model_textbox.change( | |
| fn=update_prompt_notes, | |
| inputs=model_textbox, | |
| outputs=prompt_notes_label,preprocess=False | |
| ) | |
| # model_options.change( | |
| # fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()), | |
| # inputs=model_options, | |
| # outputs=[model_textbox, model_textbox] | |
| # ) | |
| # model_options.change( | |
| # fn=update_prompt_notes, | |
| # inputs=model_options, | |
| # outputs=prompt_notes_label | |
| # ) | |
| lora_gallery.select( | |
| fn=update_selection, | |
| inputs=[image_size_ratio], | |
| outputs=[model_textbox, model_textbox, gr.State(selected_index), image_size_ratio, prompt_notes_label] | |
| ) | |
| #################### model end ######################################## | |
| composite_button.click( | |
| fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity), | |
| inputs=[input_image, composite_color, composite_opacity], | |
| outputs=[input_image] | |
| ) | |
| #use conditioned_image as the input_image for generate_input_image_click | |
| generate_input_image_from_gallery.click( | |
| fn=unload_3d_models, | |
| trigger_mode="always_last", | |
| outputs=[generate_3d_asset_button] | |
| ).then( | |
| fn=generate_input_image_click, | |
| inputs=[input_image, map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), sketch_image , image_guidance_stength, image_size_ratio], | |
| outputs=[input_image, seed_slider], scroll_to_output=True | |
| ).then( | |
| fn=update_sketch_dimensions, | |
| inputs=[input_image, sketch_image], | |
| outputs=[sketch_image, sketch_image] | |
| ) | |
| # Update the state variable with the prerendered image filepath when an image is selected | |
| prerendered_image_gallery.select( | |
| fn=on_prerendered_gallery_selection, | |
| inputs=None, | |
| outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image | |
| show_api=False | |
| ) | |
| # replace input image with selected gallery image | |
| replace_input_image_button.click( | |
| lambda: current_prerendered_image.value, | |
| inputs=None, | |
| outputs=[input_image], scroll_to_output=True | |
| ).then( | |
| fn=update_sketch_dimensions, | |
| inputs=[input_image, sketch_image], | |
| outputs=[sketch_image, sketch_image] | |
| ) | |
| output_overlay_composite.change( | |
| fn=combine_images_with_lerp, | |
| inputs=[input_image, output_image, output_overlay_composite], | |
| outputs=[overlay_image], scroll_to_output=True | |
| ) | |
| output_blend_multiply_composite.change( | |
| fn=multiply_and_blend_images, | |
| inputs=[input_image, output_image, output_blend_multiply_composite], | |
| outputs=[overlay_image], | |
| scroll_to_output=True | |
| ) | |
| output_alpha_composite.change( | |
| fn=alpha_composite_with_control, | |
| inputs=[input_image, output_image, output_alpha_composite], | |
| outputs=[overlay_image], | |
| scroll_to_output=True | |
| ) | |
| add_border_button.click( | |
| fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)), | |
| inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image], | |
| outputs=[bordered_image_output], | |
| scroll_to_output=True | |
| ) | |
| # 3D Generation | |
| # generate_depth_button.click( | |
| # fn=generate_depth_button_click, | |
| # inputs=[depth_image_source, resized_width_slider, z_scale_slider, input_image, output_image, overlay_image, bordered_image_output], | |
| # outputs=[depth_map_output, model_output, model_file], scroll_to_output=True | |
| # ) | |
| accordian_3d.expand( | |
| # fn=load_trellis_model, | |
| # trigger_mode="always_last" | |
| # ).then( | |
| fn=load_3d_models, | |
| trigger_mode="always_last", | |
| outputs=[generate_3d_asset_button], | |
| show_api=False | |
| ) | |
| accordian_3d.collapse( | |
| fn=unload_3d_models, | |
| trigger_mode="always_last", | |
| outputs=[generate_3d_asset_button], | |
| show_api=False | |
| ) | |
| # Chain the buttons | |
| generate_3d_asset_button.click( | |
| fn=generate_3d_asset_part1, | |
| inputs=[depth_image_source, randomize_seed_3d, seed_3d, input_image, output_image, overlay_image, bordered_image_output], | |
| outputs=[depth_output, ddd_image_path, ddd_file_name, seed_3d ], | |
| scroll_to_output=True | |
| ).then( | |
| fn=generate_3d_asset_part2, | |
| inputs=[depth_output, ddd_image_path, ddd_file_name, seed_3d, steps, model_resolution, video_resolution ], | |
| outputs=[output_buf, video_output, depth_output], | |
| scroll_to_output=True | |
| ).then( | |
| lambda: (gr.Button(interactive=True), gr.Button(interactive=True)), | |
| outputs=[extract_glb_btn, extract_gaussian_btn] | |
| ) | |
| # Extraction callbacks remain unchanged from previous behavior | |
| extract_glb_btn.click( | |
| fn=extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, glb_file] | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[glb_file] | |
| ) | |
| extract_gaussian_btn.click( | |
| fn=extract_gaussian, | |
| inputs=[output_buf], | |
| outputs=[model_output, gaussian_file] | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[gaussian_file] | |
| ) | |
| if __name__ == "__main__": | |
| constants.load_env_vars(constants.dotenv_path) | |
| logging.basicConfig( | |
| format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO | |
| ) | |
| logging.info("Environment Variables: %s" % os.environ) | |
| # if _get_output(["nvcc", "--version"]) is None: | |
| # logging.info("Installing CUDA toolkit...") | |
| # install_cuda_toolkit() | |
| # else: | |
| # logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"])) | |
| # logging.info("Installing CUDA extensions...") | |
| # setup_runtime_env() | |
| #main(os.getenv("DEBUG") == "1") | |
| #main() | |
| #-------------- ------------------------------------------------MODEL INITIALIZATION------------------------------------------------------------# | |
| # Load models once during module import | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| base_model = "black-forest-labs/FLUX.1-dev" | |
| good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
| #pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=good_vae).to(device) | |
| #pipe.enable_model_cpu_offload() | |
| #pipe.vae.enable_slicing() | |
| #pipe.attn_implementation="flash_attention_2" | |
| # image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
| # depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True) | |
| if constants.IS_SHARED_SPACE: | |
| TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
| TRELLIS_PIPELINE.to(device) | |
| try: | |
| TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
| except: | |
| pass | |
| hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False) | |
| hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered", 'e:/TMP'], favicon_path="./assets/favicon.ico", max_file_size="10mb") | |