Spaces:
Running
on
Zero
Running
on
Zero
Add progress and change tokenization
Browse files- app.py +17 -8
- utils/ai_generator.py +10 -10
- utils/ai_generator_diffusers_flux.py +56 -16
- utils/constants.py +2 -0
- utils/live_preview_helpers.py +166 -0
app.py
CHANGED
|
@@ -6,8 +6,6 @@ from tempfile import NamedTemporaryFile
|
|
| 6 |
from pathlib import Path
|
| 7 |
import atexit
|
| 8 |
import random
|
| 9 |
-
import spaces
|
| 10 |
-
|
| 11 |
# Import constants
|
| 12 |
import utils.constants as constants
|
| 13 |
|
|
@@ -161,8 +159,7 @@ def get_model_and_lora(model_textbox):
|
|
| 161 |
default_model = model_textbox
|
| 162 |
return default_model, []
|
| 163 |
|
| 164 |
-
|
| 165 |
-
def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=3):
|
| 166 |
# Get the model and LoRA weights
|
| 167 |
model, lora_weights = get_model_and_lora(model_textbox_value)
|
| 168 |
global current_prerendered_image
|
|
@@ -191,7 +188,8 @@ def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt
|
|
| 191 |
conditioned_image,
|
| 192 |
stength=strength,
|
| 193 |
height=height,
|
| 194 |
-
width=width
|
|
|
|
| 195 |
)
|
| 196 |
|
| 197 |
# Open the generated image
|
|
@@ -413,13 +411,24 @@ with gr.Blocks(css_paths="style_20250128.css", title="HexaGrid Creator", theme='
|
|
| 413 |
label="Map Options",
|
| 414 |
choices=list(constants.PROMPTS.keys()),
|
| 415 |
value="Alien Landscape",
|
| 416 |
-
elem_classes="solid"
|
|
|
|
| 417 |
)
|
| 418 |
with gr.Column():
|
| 419 |
# Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1
|
| 420 |
# The values of height and width are based on common resolutions for each aspect ratio
|
| 421 |
# Default to 16x9, 912x512
|
| 422 |
-
image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value",interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
prompt_textbox = gr.Textbox(
|
| 424 |
label="Prompt",
|
| 425 |
visible=False,
|
|
@@ -571,7 +580,7 @@ with gr.Blocks(css_paths="style_20250128.css", title="HexaGrid Creator", theme='
|
|
| 571 |
)
|
| 572 |
generate_input_image.click(
|
| 573 |
fn=generate_input_image_click,
|
| 574 |
-
inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox, gr.State(False), gr.State(0.5), image_size_ratio],
|
| 575 |
outputs=[input_image], scroll_to_output=True
|
| 576 |
)
|
| 577 |
generate_depth_button.click(
|
|
|
|
| 6 |
from pathlib import Path
|
| 7 |
import atexit
|
| 8 |
import random
|
|
|
|
|
|
|
| 9 |
# Import constants
|
| 10 |
import utils.constants as constants
|
| 11 |
|
|
|
|
| 159 |
default_model = model_textbox
|
| 160 |
return default_model, []
|
| 161 |
|
| 162 |
+
def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=3, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 163 |
# Get the model and LoRA weights
|
| 164 |
model, lora_weights = get_model_and_lora(model_textbox_value)
|
| 165 |
global current_prerendered_image
|
|
|
|
| 188 |
conditioned_image,
|
| 189 |
stength=strength,
|
| 190 |
height=height,
|
| 191 |
+
width=width,
|
| 192 |
+
seed=seed
|
| 193 |
)
|
| 194 |
|
| 195 |
# Open the generated image
|
|
|
|
| 411 |
label="Map Options",
|
| 412 |
choices=list(constants.PROMPTS.keys()),
|
| 413 |
value="Alien Landscape",
|
| 414 |
+
elem_classes="solid",
|
| 415 |
+
scale=0
|
| 416 |
)
|
| 417 |
with gr.Column():
|
| 418 |
# Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1
|
| 419 |
# The values of height and width are based on common resolutions for each aspect ratio
|
| 420 |
# Default to 16x9, 912x512
|
| 421 |
+
image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True)
|
| 422 |
+
with gr.Column():
|
| 423 |
+
seed = gr.Slider(
|
| 424 |
+
label="Seed",
|
| 425 |
+
minimum=0,
|
| 426 |
+
maximum=constants.MAX_SEED,
|
| 427 |
+
step=1,
|
| 428 |
+
value=0,
|
| 429 |
+
scale=0
|
| 430 |
+
)
|
| 431 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, scale=0, interactive=True)
|
| 432 |
prompt_textbox = gr.Textbox(
|
| 433 |
label="Prompt",
|
| 434 |
visible=False,
|
|
|
|
| 580 |
)
|
| 581 |
generate_input_image.click(
|
| 582 |
fn=generate_input_image_click,
|
| 583 |
+
inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox,gr.State( seed if randomize_seed==False else random.randint(0, constants.MAX_SEED)), gr.State(False), gr.State(0.5), image_size_ratio],
|
| 584 |
outputs=[input_image], scroll_to_output=True
|
| 585 |
)
|
| 586 |
generate_depth_button.click(
|
utils/ai_generator.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
# utils/ai_generator.py
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import time
|
| 5 |
from turtle import width # Added for implementing delays
|
| 6 |
-
import spaces
|
| 7 |
import torch
|
| 8 |
import random
|
| 9 |
from utils.ai_generator_diffusers_flux import generate_ai_image_local
|
|
@@ -15,8 +14,7 @@ from PIL import Image
|
|
| 15 |
from tempfile import NamedTemporaryFile
|
| 16 |
import utils.constants as constants
|
| 17 |
|
| 18 |
-
|
| 19 |
-
def generate_image_from_text(text, model_name="flax-community/dalle-mini", image_width=768, image_height=512):
|
| 20 |
# Initialize the InferenceClient
|
| 21 |
client = InferenceClient()
|
| 22 |
# Generate the image from the text
|
|
@@ -40,12 +38,13 @@ def generate_ai_image(
|
|
| 40 |
width=912,
|
| 41 |
height=512,
|
| 42 |
strength=0.5,
|
|
|
|
|
|
|
| 43 |
*args,
|
| 44 |
**kwargs
|
| 45 |
-
):
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
print("Local GPU available. Generating image locally.")
|
| 49 |
if conditioned_image is not None:
|
| 50 |
pipeline = "FluxImg2ImgPipeline"
|
| 51 |
return generate_ai_image_local(
|
|
@@ -69,10 +68,11 @@ def generate_ai_image(
|
|
| 69 |
neg_prompt_textbox_value,
|
| 70 |
model,
|
| 71 |
height=height,
|
| 72 |
-
width=width
|
|
|
|
| 73 |
)
|
| 74 |
|
| 75 |
-
def generate_ai_image_remote(map_option, prompt_textbox_value, neg_prompt_textbox_value, model, height=512, width=912, num_inference_steps=30, guidance_scale=3.5, seed=777):
|
| 76 |
max_retries = 3
|
| 77 |
retry_delay = 4 # Initial delay in seconds
|
| 78 |
|
|
|
|
| 1 |
# utils/ai_generator.py
|
| 2 |
+
import gradio as gr
|
| 3 |
import os
|
| 4 |
import time
|
| 5 |
from turtle import width # Added for implementing delays
|
|
|
|
| 6 |
import torch
|
| 7 |
import random
|
| 8 |
from utils.ai_generator_diffusers_flux import generate_ai_image_local
|
|
|
|
| 14 |
from tempfile import NamedTemporaryFile
|
| 15 |
import utils.constants as constants
|
| 16 |
|
| 17 |
+
def generate_image_from_text(text, model_name="flax-community/dalle-mini", image_width=768, image_height=512, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 18 |
# Initialize the InferenceClient
|
| 19 |
client = InferenceClient()
|
| 20 |
# Generate the image from the text
|
|
|
|
| 38 |
width=912,
|
| 39 |
height=512,
|
| 40 |
strength=0.5,
|
| 41 |
+
seed = random.randint(0, constants.MAX_SEED),
|
| 42 |
+
progress=gr.Progress(track_tqdm=True),
|
| 43 |
*args,
|
| 44 |
**kwargs
|
| 45 |
+
):
|
| 46 |
+
if (torch.cuda.is_available() and torch.cuda.device_count() >= 1):
|
| 47 |
+
print("Local GPU available. Generating image locally.")
|
|
|
|
| 48 |
if conditioned_image is not None:
|
| 49 |
pipeline = "FluxImg2ImgPipeline"
|
| 50 |
return generate_ai_image_local(
|
|
|
|
| 68 |
neg_prompt_textbox_value,
|
| 69 |
model,
|
| 70 |
height=height,
|
| 71 |
+
width=width,
|
| 72 |
+
seed=seed
|
| 73 |
)
|
| 74 |
|
| 75 |
+
def generate_ai_image_remote(map_option, prompt_textbox_value, neg_prompt_textbox_value, model, height=512, width=912, num_inference_steps=30, guidance_scale=3.5, seed=777,progress=gr.Progress(track_tqdm=True)):
|
| 76 |
max_retries = 3
|
| 77 |
retry_delay = 4 # Initial delay in seconds
|
| 78 |
|
utils/ai_generator_diffusers_flux.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
# utils/ai_generator_diffusers_flux.py
|
|
|
|
| 2 |
import os
|
| 3 |
import utils.constants as constants
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
-
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
|
| 7 |
import accelerate
|
| 8 |
-
import
|
| 9 |
import safetensors
|
| 10 |
import xformers
|
| 11 |
from diffusers.utils import load_image
|
|
@@ -27,7 +28,6 @@ from utils.color_utils import detect_color_format
|
|
| 27 |
import utils.misc as misc
|
| 28 |
from pathlib import Path
|
| 29 |
import warnings
|
| 30 |
-
|
| 31 |
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
|
| 32 |
#print(torch.__version__) # Ensure it's 2.0 or newer
|
| 33 |
#print(torch.cuda.is_available()) # Ensure CUDA is available
|
|
@@ -36,7 +36,6 @@ PIPELINE_CLASSES = {
|
|
| 36 |
"FluxPipeline": FluxPipeline,
|
| 37 |
"FluxImg2ImgPipeline": FluxImg2ImgPipeline
|
| 38 |
}
|
| 39 |
-
|
| 40 |
@spaces.GPU(duration=140)
|
| 41 |
def generate_image_from_text(
|
| 42 |
text,
|
|
@@ -48,16 +47,28 @@ def generate_image_from_text(
|
|
| 48 |
guidance_scale=3.5,
|
| 49 |
num_inference_steps=50,
|
| 50 |
seed=0,
|
| 51 |
-
additional_parameters=None
|
|
|
|
| 52 |
):
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
print(f"device:{device}\nmodel_name:{model_name}\n")
|
|
|
|
|
|
|
| 55 |
pipe = FluxPipeline.from_pretrained(
|
| 56 |
model_name,
|
| 57 |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
| 58 |
).to(device)
|
| 59 |
-
pipe = pipe.to(device)
|
| 60 |
pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# Load and apply LoRA weights
|
| 62 |
if lora_weights:
|
| 63 |
for lora_weight in lora_weights:
|
|
@@ -74,12 +85,18 @@ def generate_image_from_text(
|
|
| 74 |
)
|
| 75 |
else:
|
| 76 |
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
|
|
|
|
|
|
| 77 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 78 |
conditions = []
|
|
|
|
|
|
|
| 79 |
if conditioned_image is not None:
|
| 80 |
conditioned_image = crop_and_resize_image(conditioned_image, 1024, 1024)
|
| 81 |
condition = Condition("subject", conditioned_image)
|
| 82 |
conditions.append(condition)
|
|
|
|
|
|
|
| 83 |
generate_params = {
|
| 84 |
"prompt": text,
|
| 85 |
"height": image_height,
|
|
@@ -89,12 +106,24 @@ def generate_image_from_text(
|
|
| 89 |
"generator": generator,
|
| 90 |
"conditions": conditions if conditions else None
|
| 91 |
}
|
|
|
|
| 92 |
if additional_parameters:
|
| 93 |
generate_params.update(additional_parameters)
|
| 94 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
|
|
|
|
|
|
| 95 |
result = pipe(**generate_params)
|
| 96 |
image = result.images[0]
|
| 97 |
pipe.unload_lora_weights()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
return image
|
| 99 |
|
| 100 |
@spaces.GPU(duration=140)
|
|
@@ -111,18 +140,19 @@ def generate_image_lowmem(
|
|
| 111 |
seed=0,
|
| 112 |
true_cfg_scale=1.0,
|
| 113 |
pipeline_name="FluxPipeline",
|
| 114 |
-
strength=0.75,
|
| 115 |
-
additional_parameters=None
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
# Retrieve the pipeline class from the mapping
|
| 119 |
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
|
| 120 |
if not pipeline_class:
|
| 121 |
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
|
| 122 |
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
|
|
|
| 123 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 124 |
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
| 125 |
-
|
| 126 |
# Disable gradient calculations
|
| 127 |
with torch.no_grad():
|
| 128 |
# Initialize the pipeline inside the context manager
|
|
@@ -134,6 +164,16 @@ def generate_image_lowmem(
|
|
| 134 |
pipe.enable_model_cpu_offload()
|
| 135 |
# alternative version that may be more efficient
|
| 136 |
# pipe.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 138 |
if flash_attention_enabled == False:
|
| 139 |
#Enable xFormers memory-efficient attention (optional)
|
|
@@ -282,6 +322,7 @@ def generate_ai_image_local (
|
|
| 282 |
seed=777,
|
| 283 |
pipeline_name="FluxPipeline",
|
| 284 |
strength=0.75,
|
|
|
|
| 285 |
):
|
| 286 |
try:
|
| 287 |
if map_option != "Prompt":
|
|
@@ -306,10 +347,10 @@ def generate_ai_image_local (
|
|
| 306 |
additional_parameters[key] = int(value)
|
| 307 |
elif key in ['guidance_scale','true_cfg_scale']:
|
| 308 |
additional_parameters[key] = float(value)
|
| 309 |
-
height = additional_parameters.
|
| 310 |
-
width = additional_parameters.
|
| 311 |
-
num_inference_steps = additional_parameters.
|
| 312 |
-
guidance_scale = additional_parameters.
|
| 313 |
print("Generating image with the following parameters:")
|
| 314 |
print(f"Model: {model}")
|
| 315 |
print(f"LoRA Weights: {lora_weights}")
|
|
@@ -347,7 +388,6 @@ def generate_ai_image_local (
|
|
| 347 |
return None
|
| 348 |
|
| 349 |
# does not work
|
| 350 |
-
#@spaces.GPU(duration=256)
|
| 351 |
def merge_LoRA_weights(model="black-forest-labs/FLUX.1-dev",
|
| 352 |
lora_weights="Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"):
|
| 353 |
|
|
|
|
| 1 |
# utils/ai_generator_diffusers_flux.py
|
| 2 |
+
import gradio as gr
|
| 3 |
import os
|
| 4 |
import utils.constants as constants
|
| 5 |
import spaces
|
| 6 |
import torch
|
| 7 |
+
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
|
| 8 |
import accelerate
|
| 9 |
+
from transformers import AutoTokenizer
|
| 10 |
import safetensors
|
| 11 |
import xformers
|
| 12 |
from diffusers.utils import load_image
|
|
|
|
| 28 |
import utils.misc as misc
|
| 29 |
from pathlib import Path
|
| 30 |
import warnings
|
|
|
|
| 31 |
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
|
| 32 |
#print(torch.__version__) # Ensure it's 2.0 or newer
|
| 33 |
#print(torch.cuda.is_available()) # Ensure CUDA is available
|
|
|
|
| 36 |
"FluxPipeline": FluxPipeline,
|
| 37 |
"FluxImg2ImgPipeline": FluxImg2ImgPipeline
|
| 38 |
}
|
|
|
|
| 39 |
@spaces.GPU(duration=140)
|
| 40 |
def generate_image_from_text(
|
| 41 |
text,
|
|
|
|
| 47 |
guidance_scale=3.5,
|
| 48 |
num_inference_steps=50,
|
| 49 |
seed=0,
|
| 50 |
+
additional_parameters=None,
|
| 51 |
+
progress=gr.Progress(track_tqdm=True)
|
| 52 |
):
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
print(f"device:{device}\nmodel_name:{model_name}\n")
|
| 55 |
+
|
| 56 |
+
# Initialize the pipeline
|
| 57 |
pipe = FluxPipeline.from_pretrained(
|
| 58 |
model_name,
|
| 59 |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
| 60 |
).to(device)
|
|
|
|
| 61 |
pipe.enable_model_cpu_offload()
|
| 62 |
+
|
| 63 |
+
# Access the tokenizer from the pipeline
|
| 64 |
+
tokenizer = pipe.tokenizer
|
| 65 |
+
|
| 66 |
+
# Handle add_prefix_space attribute
|
| 67 |
+
if getattr(tokenizer, 'add_prefix_space', False):
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
| 69 |
+
# Update the pipeline's tokenizer
|
| 70 |
+
pipe.tokenizer = tokenizer
|
| 71 |
+
|
| 72 |
# Load and apply LoRA weights
|
| 73 |
if lora_weights:
|
| 74 |
for lora_weight in lora_weights:
|
|
|
|
| 85 |
)
|
| 86 |
else:
|
| 87 |
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
| 88 |
+
|
| 89 |
+
# Set the random seed for reproducibility
|
| 90 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 91 |
conditions = []
|
| 92 |
+
|
| 93 |
+
# Handle conditioned image if provided
|
| 94 |
if conditioned_image is not None:
|
| 95 |
conditioned_image = crop_and_resize_image(conditioned_image, 1024, 1024)
|
| 96 |
condition = Condition("subject", conditioned_image)
|
| 97 |
conditions.append(condition)
|
| 98 |
+
|
| 99 |
+
# Prepare parameters for image generation
|
| 100 |
generate_params = {
|
| 101 |
"prompt": text,
|
| 102 |
"height": image_height,
|
|
|
|
| 106 |
"generator": generator,
|
| 107 |
"conditions": conditions if conditions else None
|
| 108 |
}
|
| 109 |
+
|
| 110 |
if additional_parameters:
|
| 111 |
generate_params.update(additional_parameters)
|
| 112 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
| 113 |
+
|
| 114 |
+
# Generate the image
|
| 115 |
result = pipe(**generate_params)
|
| 116 |
image = result.images[0]
|
| 117 |
pipe.unload_lora_weights()
|
| 118 |
+
|
| 119 |
+
# Clean up
|
| 120 |
+
del result
|
| 121 |
+
del conditions
|
| 122 |
+
del generator
|
| 123 |
+
del pipe
|
| 124 |
+
torch.cuda.empty_cache()
|
| 125 |
+
torch.cuda.ipc_collect()
|
| 126 |
+
|
| 127 |
return image
|
| 128 |
|
| 129 |
@spaces.GPU(duration=140)
|
|
|
|
| 140 |
seed=0,
|
| 141 |
true_cfg_scale=1.0,
|
| 142 |
pipeline_name="FluxPipeline",
|
| 143 |
+
strength=0.75,
|
| 144 |
+
additional_parameters=None,
|
| 145 |
+
progress=gr.Progress(track_tqdm=True)
|
| 146 |
+
):
|
| 147 |
# Retrieve the pipeline class from the mapping
|
| 148 |
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
|
| 149 |
if not pipeline_class:
|
| 150 |
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
|
| 151 |
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
| 152 |
+
|
| 153 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 154 |
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
| 155 |
+
print(f"\n {get_torch_info()}\n")
|
| 156 |
# Disable gradient calculations
|
| 157 |
with torch.no_grad():
|
| 158 |
# Initialize the pipeline inside the context manager
|
|
|
|
| 164 |
pipe.enable_model_cpu_offload()
|
| 165 |
# alternative version that may be more efficient
|
| 166 |
# pipe.enable_sequential_cpu_offload()
|
| 167 |
+
|
| 168 |
+
# Access the tokenizer from the pipeline
|
| 169 |
+
tokenizer = pipe.tokenizer
|
| 170 |
+
|
| 171 |
+
# Check if add_prefix_space is set and convert to slow tokenizer if necessary
|
| 172 |
+
if getattr(tokenizer, 'add_prefix_space', False):
|
| 173 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
| 174 |
+
# Update the pipeline's tokenizer
|
| 175 |
+
pipe.tokenizer = tokenizer
|
| 176 |
+
|
| 177 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 178 |
if flash_attention_enabled == False:
|
| 179 |
#Enable xFormers memory-efficient attention (optional)
|
|
|
|
| 322 |
seed=777,
|
| 323 |
pipeline_name="FluxPipeline",
|
| 324 |
strength=0.75,
|
| 325 |
+
progress=gr.Progress(track_tqdm=True)
|
| 326 |
):
|
| 327 |
try:
|
| 328 |
if map_option != "Prompt":
|
|
|
|
| 347 |
additional_parameters[key] = int(value)
|
| 348 |
elif key in ['guidance_scale','true_cfg_scale']:
|
| 349 |
additional_parameters[key] = float(value)
|
| 350 |
+
height = additional_parameters.pop('height', height)
|
| 351 |
+
width = additional_parameters.pop('width', width)
|
| 352 |
+
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps)
|
| 353 |
+
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale)
|
| 354 |
print("Generating image with the following parameters:")
|
| 355 |
print(f"Model: {model}")
|
| 356 |
print(f"LoRA Weights: {lora_weights}")
|
|
|
|
| 388 |
return None
|
| 389 |
|
| 390 |
# does not work
|
|
|
|
| 391 |
def merge_LoRA_weights(model="black-forest-labs/FLUX.1-dev",
|
| 392 |
lora_weights="Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"):
|
| 393 |
|
utils/constants.py
CHANGED
|
@@ -4,6 +4,7 @@
|
|
| 4 |
import os
|
| 5 |
from pathlib import Path
|
| 6 |
from dotenv import load_dotenv
|
|
|
|
| 7 |
|
| 8 |
#Set the environment variables
|
| 9 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256,expandable_segments:True"
|
|
@@ -32,6 +33,7 @@ if not HF_API_TOKEN:
|
|
| 32 |
raise ValueError("HF_TOKEN is not set. Please check your .env file.")
|
| 33 |
|
| 34 |
default_lut_example_img = "./LUT/daisy.jpg"
|
|
|
|
| 35 |
|
| 36 |
PROMPTS = {
|
| 37 |
"BorderBlack": "eight_color (tabletop_map built from small hexagon pieces) as ((empty black on all sides), barren alien_world_map), with light_blue_is_rivers and brown_is_mountains and red_is_volcano and [white_is_snow at the top and bottom of map] as (four_color background: light_blue, green, tan, brown), horizontal_gradient is (brown to tan to green to light_blue to blue) and vertical_gradient is (white to blue to (green, tan and red) to blue to white), (middle is dark, no_reflections, no_shadows), ((partial hexes on edges and sides are black))",
|
|
|
|
| 4 |
import os
|
| 5 |
from pathlib import Path
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
+
import numpy as np
|
| 8 |
|
| 9 |
#Set the environment variables
|
| 10 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256,expandable_segments:True"
|
|
|
|
| 33 |
raise ValueError("HF_TOKEN is not set. Please check your .env file.")
|
| 34 |
|
| 35 |
default_lut_example_img = "./LUT/daisy.jpg"
|
| 36 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 37 |
|
| 38 |
PROMPTS = {
|
| 39 |
"BorderBlack": "eight_color (tabletop_map built from small hexagon pieces) as ((empty black on all sides), barren alien_world_map), with light_blue_is_rivers and brown_is_mountains and red_is_volcano and [white_is_snow at the top and bottom of map] as (four_color background: light_blue, green, tan, brown), horizontal_gradient is (brown to tan to green to light_blue to blue) and vertical_gradient is (white to blue to (green, tan and red) to blue to white), (middle is dark, no_reflections, no_shadows), ((partial hexes on edges and sides are black))",
|
utils/live_preview_helpers.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
| 4 |
+
from typing import Any, Dict, List, Optional, Union
|
| 5 |
+
|
| 6 |
+
# Helper functions
|
| 7 |
+
def calculate_shift(
|
| 8 |
+
image_seq_len,
|
| 9 |
+
base_seq_len: int = 256,
|
| 10 |
+
max_seq_len: int = 4096,
|
| 11 |
+
base_shift: float = 0.5,
|
| 12 |
+
max_shift: float = 1.16,
|
| 13 |
+
):
|
| 14 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 15 |
+
b = base_shift - m * base_seq_len
|
| 16 |
+
mu = image_seq_len * m + b
|
| 17 |
+
return mu
|
| 18 |
+
|
| 19 |
+
def retrieve_timesteps(
|
| 20 |
+
scheduler,
|
| 21 |
+
num_inference_steps: Optional[int] = None,
|
| 22 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 23 |
+
timesteps: Optional[List[int]] = None,
|
| 24 |
+
sigmas: Optional[List[float]] = None,
|
| 25 |
+
**kwargs,
|
| 26 |
+
):
|
| 27 |
+
if timesteps is not None and sigmas is not None:
|
| 28 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 29 |
+
if timesteps is not None:
|
| 30 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 31 |
+
timesteps = scheduler.timesteps
|
| 32 |
+
num_inference_steps = len(timesteps)
|
| 33 |
+
elif sigmas is not None:
|
| 34 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 35 |
+
timesteps = scheduler.timesteps
|
| 36 |
+
num_inference_steps = len(timesteps)
|
| 37 |
+
else:
|
| 38 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 39 |
+
timesteps = scheduler.timesteps
|
| 40 |
+
return timesteps, num_inference_steps
|
| 41 |
+
|
| 42 |
+
# FLUX pipeline function
|
| 43 |
+
@torch.inference_mode()
|
| 44 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
| 45 |
+
self,
|
| 46 |
+
prompt: Union[str, List[str]] = None,
|
| 47 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 48 |
+
height: Optional[int] = None,
|
| 49 |
+
width: Optional[int] = None,
|
| 50 |
+
num_inference_steps: int = 28,
|
| 51 |
+
timesteps: List[int] = None,
|
| 52 |
+
guidance_scale: float = 3.5,
|
| 53 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 54 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 55 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 56 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 57 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 58 |
+
output_type: Optional[str] = "pil",
|
| 59 |
+
return_dict: bool = True,
|
| 60 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 61 |
+
max_sequence_length: int = 512,
|
| 62 |
+
good_vae: Optional[Any] = None,
|
| 63 |
+
):
|
| 64 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 65 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 66 |
+
|
| 67 |
+
# 1. Check inputs
|
| 68 |
+
self.check_inputs(
|
| 69 |
+
prompt,
|
| 70 |
+
prompt_2,
|
| 71 |
+
height,
|
| 72 |
+
width,
|
| 73 |
+
prompt_embeds=prompt_embeds,
|
| 74 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 75 |
+
max_sequence_length=max_sequence_length,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self._guidance_scale = guidance_scale
|
| 79 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 80 |
+
self._interrupt = False
|
| 81 |
+
|
| 82 |
+
# 2. Define call parameters
|
| 83 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 84 |
+
device = self._execution_device
|
| 85 |
+
|
| 86 |
+
# 3. Encode prompt
|
| 87 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
| 88 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
| 89 |
+
prompt=prompt,
|
| 90 |
+
prompt_2=prompt_2,
|
| 91 |
+
prompt_embeds=prompt_embeds,
|
| 92 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 93 |
+
device=device,
|
| 94 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 95 |
+
max_sequence_length=max_sequence_length,
|
| 96 |
+
lora_scale=lora_scale,
|
| 97 |
+
)
|
| 98 |
+
# 4. Prepare latent variables
|
| 99 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 100 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 101 |
+
batch_size * num_images_per_prompt,
|
| 102 |
+
num_channels_latents,
|
| 103 |
+
height,
|
| 104 |
+
width,
|
| 105 |
+
prompt_embeds.dtype,
|
| 106 |
+
device,
|
| 107 |
+
generator,
|
| 108 |
+
latents,
|
| 109 |
+
)
|
| 110 |
+
# 5. Prepare timesteps
|
| 111 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 112 |
+
image_seq_len = latents.shape[1]
|
| 113 |
+
mu = calculate_shift(
|
| 114 |
+
image_seq_len,
|
| 115 |
+
self.scheduler.config.base_image_seq_len,
|
| 116 |
+
self.scheduler.config.max_image_seq_len,
|
| 117 |
+
self.scheduler.config.base_shift,
|
| 118 |
+
self.scheduler.config.max_shift,
|
| 119 |
+
)
|
| 120 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 121 |
+
self.scheduler,
|
| 122 |
+
num_inference_steps,
|
| 123 |
+
device,
|
| 124 |
+
timesteps,
|
| 125 |
+
sigmas,
|
| 126 |
+
mu=mu,
|
| 127 |
+
)
|
| 128 |
+
self._num_timesteps = len(timesteps)
|
| 129 |
+
|
| 130 |
+
# Handle guidance
|
| 131 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
| 132 |
+
|
| 133 |
+
# 6. Denoising loop
|
| 134 |
+
for i, t in enumerate(timesteps):
|
| 135 |
+
if self.interrupt:
|
| 136 |
+
continue
|
| 137 |
+
|
| 138 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 139 |
+
|
| 140 |
+
noise_pred = self.transformer(
|
| 141 |
+
hidden_states=latents,
|
| 142 |
+
timestep=timestep / 1000,
|
| 143 |
+
guidance=guidance,
|
| 144 |
+
pooled_projections=pooled_prompt_embeds,
|
| 145 |
+
encoder_hidden_states=prompt_embeds,
|
| 146 |
+
txt_ids=text_ids,
|
| 147 |
+
img_ids=latent_image_ids,
|
| 148 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 149 |
+
return_dict=False,
|
| 150 |
+
)[0]
|
| 151 |
+
# Yield intermediate result
|
| 152 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 153 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 154 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
| 155 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
| 156 |
+
|
| 157 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 158 |
+
torch.cuda.empty_cache()
|
| 159 |
+
|
| 160 |
+
# Final image using good_vae
|
| 161 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 162 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
| 163 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
| 164 |
+
self.maybe_free_model_hooks()
|
| 165 |
+
torch.cuda.empty_cache()
|
| 166 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|