Spaces:
Running
on
Zero
Running
on
Zero
Revision update 0.5.21
Browse fileslora_gallery (preview)
new luts
more hexagon text options
faster loading
Gradio 5.21.0
Fill model
- LUT/Colorful.cube +0 -0
- LUT/Contrast.cube +0 -0
- LUT/PureWhites.cube +0 -0
- LUT/Saturation.cube +0 -0
- README.md +1 -1
- app.py +367 -200
- images/prerendered/th/FLUX.1-Fill-dev.png +3 -0
- images/prerendered/th/FLUX.1-dev.png +3 -0
- images/prerendered/th/FLUX.1-schnell.png +3 -0
- images/prerendered/th/Flex.1-alpha.png +3 -0
- style_20250128.css → style_20250314.css +11 -5
- utils/constants.py +219 -15
- utils/hex_grid.py +5 -0
- utils/image_utils.py +64 -25
- utils/lora_details.py +30 -9
- utils/misc.py +18 -1
LUT/Colorful.cube
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
LUT/Contrast.cube
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
LUT/PureWhites.cube
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
LUT/Saturation.cube
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: yellow
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
python_version: 3.10.13
|
| 8 |
-
sdk_version: 5.
|
| 9 |
app_file: app.py
|
| 10 |
pinned: true
|
| 11 |
short_description: Transform Your Images into Mesmerizing Hexagon Grids
|
|
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
python_version: 3.10.13
|
| 8 |
+
sdk_version: 5.21.0
|
| 9 |
app_file: app.py
|
| 10 |
pinned: true
|
| 11 |
short_description: Transform Your Images into Mesmerizing Hexagon Grids
|
app.py
CHANGED
|
@@ -11,11 +11,12 @@ from PIL import Image, ImageFilter
|
|
| 11 |
from easydict import EasyDict as edict
|
| 12 |
import utils.constants as constants
|
| 13 |
from haishoku.haishoku import Haishoku
|
|
|
|
| 14 |
|
| 15 |
from tempfile import NamedTemporaryFile
|
| 16 |
import atexit
|
| 17 |
import random
|
| 18 |
-
|
| 19 |
from transformers import AutoTokenizer, DPTImageProcessor, DPTForDepthEstimation
|
| 20 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 21 |
from trellis.representations import Gaussian, MeshExtractResult
|
|
@@ -40,14 +41,14 @@ from utils.misc import (
|
|
| 40 |
get_filename,
|
| 41 |
pause,
|
| 42 |
convert_ratio_to_dimensions,
|
|
|
|
| 43 |
get_seed,
|
| 44 |
-
get_output_name
|
| 45 |
) #install_cuda_toolkit,install_torch, _get_output, setup_runtime_env)
|
| 46 |
|
| 47 |
from utils.image_utils import (
|
| 48 |
change_color,
|
| 49 |
open_image,
|
| 50 |
-
build_prerendered_images_by_quality,
|
| 51 |
upscale_image,
|
| 52 |
lerp_imagemath,
|
| 53 |
shrink_and_paste_on_blank,
|
|
@@ -56,10 +57,12 @@ from utils.image_utils import (
|
|
| 56 |
multiply_and_blend_images,
|
| 57 |
alpha_composite_with_control,
|
| 58 |
crop_and_resize_image,
|
|
|
|
| 59 |
convert_to_rgba_png,
|
| 60 |
resize_image_with_aspect_ratio,
|
| 61 |
build_prerendered_images_by_quality,
|
| 62 |
-
get_image_from_dict
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
from utils.hex_grid import (
|
|
@@ -82,16 +85,28 @@ from utils.excluded_colors import (
|
|
| 82 |
|
| 83 |
from utils.lora_details import (
|
| 84 |
upd_prompt_notes,
|
|
|
|
| 85 |
split_prompt_precisely,
|
| 86 |
approximate_token_count,
|
| 87 |
-
get_trigger_words
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
)
|
| 89 |
-
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
|
| 90 |
|
| 91 |
PIPELINE_CLASSES = {
|
| 92 |
"FluxPipeline": FluxPipeline,
|
| 93 |
"FluxImg2ImgPipeline": FluxImg2ImgPipeline,
|
| 94 |
-
"FluxControlPipeline": FluxControlPipeline
|
|
|
|
| 95 |
}
|
| 96 |
|
| 97 |
from utils.version_info import (
|
|
@@ -103,8 +118,15 @@ from utils.version_info import (
|
|
| 103 |
#from utils.depth_estimation import (get_depth_map_from_state)
|
| 104 |
|
| 105 |
input_image_palette = []
|
| 106 |
-
current_prerendered_image = gr.State("./images/
|
| 107 |
user_dir = constants.TMPDIR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
# Register the cleanup function
|
| 110 |
atexit.register(cleanup_temp_files)
|
|
@@ -209,18 +231,149 @@ def get_model_and_lora(model_textbox):
|
|
| 209 |
default_model = model_textbox
|
| 210 |
return default_model, []
|
| 211 |
|
| 212 |
-
|
| 213 |
-
"
|
| 214 |
-
|
| 215 |
-
"
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
# @spaces.GPU(duration=140, progress=gr.Progress(track_tqdm=True))
|
| 222 |
-
# def generate_image(pipe, generate_params, progress=gr.Progress(track_tqdm=True)):
|
| 223 |
-
# return pipe(**generate_params)
|
| 224 |
|
| 225 |
@spaces.GPU(duration=200, progress=gr.Progress(track_tqdm=True))
|
| 226 |
def generate_image_lowmem(
|
|
@@ -229,6 +382,7 @@ def generate_image_lowmem(
|
|
| 229 |
model_name="black-forest-labs/FLUX.1-dev",
|
| 230 |
lora_weights=None,
|
| 231 |
conditioned_image=None,
|
|
|
|
| 232 |
image_width=1368,
|
| 233 |
image_height=848,
|
| 234 |
guidance_scale=3.5,
|
|
@@ -240,28 +394,18 @@ def generate_image_lowmem(
|
|
| 240 |
additional_parameters=None,
|
| 241 |
progress=gr.Progress(track_tqdm=True)
|
| 242 |
):
|
| 243 |
-
#from torch import cuda, bfloat16, float32, Generator, no_grad, backends
|
| 244 |
-
# Retrieve the pipeline class from the mapping
|
| 245 |
-
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
|
| 246 |
-
if not pipeline_class:
|
| 247 |
-
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
|
| 248 |
-
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
| 249 |
-
|
| 250 |
-
#initialize_cuda()
|
| 251 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 252 |
-
from src.condition import Condition
|
| 253 |
-
|
| 254 |
-
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
| 255 |
-
#print(f"\n {get_torch_info()}\n")
|
| 256 |
-
# Disable gradient calculations
|
| 257 |
with torch.no_grad():
|
| 258 |
-
#
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
# alternative version that may be more efficient
|
| 266 |
# pipe.enable_sequential_cpu_offload()
|
| 267 |
if pipeline_name == "FluxPipeline":
|
|
@@ -271,127 +415,34 @@ def generate_image_lowmem(
|
|
| 271 |
else:
|
| 272 |
pipe.enable_model_cpu_offload()
|
| 273 |
|
| 274 |
-
# Access the tokenizer from the pipeline
|
| 275 |
-
tokenizer = pipe.tokenizer
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
else:
|
| 290 |
-
pipe.attn_implementation="flash_attention_2"
|
| 291 |
-
print("\nEnabled flash_attention_2.\n")
|
| 292 |
|
| 293 |
-
condition_type = "subject"
|
| 294 |
-
# Load LoRA weights
|
| 295 |
-
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
|
| 296 |
-
if lora_weights:
|
| 297 |
-
for lora_weight in lora_weights:
|
| 298 |
-
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
| 299 |
-
lora_weight_set = False
|
| 300 |
-
if lora_configs:
|
| 301 |
-
for config in lora_configs:
|
| 302 |
-
# Load LoRA weights with optional weight_name and adapter_name
|
| 303 |
-
if 'weight_name' in config:
|
| 304 |
-
weight_name = config.get("weight_name")
|
| 305 |
-
adapter_name = config.get("adapter_name")
|
| 306 |
-
lora_collection = config.get("lora_collection")
|
| 307 |
-
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
|
| 308 |
-
pipe.load_lora_weights(
|
| 309 |
-
lora_collection,
|
| 310 |
-
weight_name=weight_name,
|
| 311 |
-
adapter_name=adapter_name,
|
| 312 |
-
token=constants.HF_API_TOKEN
|
| 313 |
-
)
|
| 314 |
-
lora_weight_set = True
|
| 315 |
-
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
| 316 |
-
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
|
| 317 |
-
pipe.load_lora_weights(
|
| 318 |
-
lora_collection,
|
| 319 |
-
weight_name=weight_name,
|
| 320 |
-
token=constants.HF_API_TOKEN
|
| 321 |
-
)
|
| 322 |
-
lora_weight_set = True
|
| 323 |
-
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
| 324 |
-
elif weight_name and adapter_name and lora_weight_set == False:
|
| 325 |
-
pipe.load_lora_weights(
|
| 326 |
-
lora_weight,
|
| 327 |
-
weight_name=weight_name,
|
| 328 |
-
adapter_name=adapter_name,
|
| 329 |
-
token=constants.HF_API_TOKEN
|
| 330 |
-
)
|
| 331 |
-
lora_weight_set = True
|
| 332 |
-
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 333 |
-
elif weight_name and adapter_name==None and lora_weight_set == False:
|
| 334 |
-
pipe.load_lora_weights(
|
| 335 |
-
lora_weight,
|
| 336 |
-
weight_name=weight_name,
|
| 337 |
-
token=constants.HF_API_TOKEN
|
| 338 |
-
)
|
| 339 |
-
lora_weight_set = True
|
| 340 |
-
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 341 |
-
elif lora_weight_set == False:
|
| 342 |
-
pipe.load_lora_weights(
|
| 343 |
-
lora_weight,
|
| 344 |
-
token=constants.HF_API_TOKEN
|
| 345 |
-
)
|
| 346 |
-
lora_weight_set = True
|
| 347 |
-
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 348 |
-
# Apply 'pipe' configurations if present
|
| 349 |
-
if 'pipe' in config:
|
| 350 |
-
pipe_config = config['pipe']
|
| 351 |
-
for method_name, params in pipe_config.items():
|
| 352 |
-
method = getattr(pipe, method_name, None)
|
| 353 |
-
if method:
|
| 354 |
-
print(f"Applying pipe method: {method_name} with params: {params}")
|
| 355 |
-
method(**params)
|
| 356 |
-
else:
|
| 357 |
-
print(f"Method {method_name} not found in pipe.")
|
| 358 |
-
if 'condition_type' in config:
|
| 359 |
-
condition_type = config['condition_type']
|
| 360 |
-
if condition_type == "coloring":
|
| 361 |
-
#pipe.enable_coloring()
|
| 362 |
-
print("\nEnabled coloring.\n")
|
| 363 |
-
elif condition_type == "deblurring":
|
| 364 |
-
#pipe.enable_deblurring()
|
| 365 |
-
print("\nEnabled deblurring.\n")
|
| 366 |
-
elif condition_type == "fill":
|
| 367 |
-
#pipe.enable_fill()
|
| 368 |
-
print("\nEnabled fill.\n")
|
| 369 |
-
elif condition_type == "depth":
|
| 370 |
-
#pipe.enable_depth()
|
| 371 |
-
print("\nEnabled depth.\n")
|
| 372 |
-
elif condition_type == "canny":
|
| 373 |
-
#pipe.enable_canny()
|
| 374 |
-
print("\nEnabled canny.\n")
|
| 375 |
-
elif condition_type == "subject":
|
| 376 |
-
#pipe.enable_subject()
|
| 377 |
-
print("\nEnabled subject.\n")
|
| 378 |
-
else:
|
| 379 |
-
print(f"Condition type {condition_type} not implemented.")
|
| 380 |
-
else:
|
| 381 |
-
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
| 382 |
# Set the random seed for reproducibility
|
| 383 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 384 |
-
conditions = []
|
| 385 |
if conditioned_image is not None:
|
| 386 |
-
conditioned_image =
|
| 387 |
-
condition = Condition(condition_type, conditioned_image)
|
| 388 |
-
conditions.append(condition)
|
| 389 |
print(f"\nAdded conditioned image.\n {conditioned_image.size}")
|
| 390 |
# Prepare the parameters for image generation
|
| 391 |
additional_parameters ={
|
| 392 |
"strength": strength,
|
| 393 |
"image": conditioned_image,
|
| 394 |
}
|
|
|
|
| 395 |
else:
|
| 396 |
print("\nNo conditioned image provided.")
|
| 397 |
if neg_prompt!=None:
|
|
@@ -405,11 +456,11 @@ def generate_image_lowmem(
|
|
| 405 |
prompt, prompt2 = split_prompt_precisely(text)
|
| 406 |
prompt_parameters = {
|
| 407 |
"prompt" : prompt,
|
| 408 |
-
"prompt_2": prompt2
|
| 409 |
}
|
| 410 |
else:
|
| 411 |
prompt_parameters = {
|
| 412 |
-
"prompt" :text
|
| 413 |
}
|
| 414 |
additional_parameters.update(prompt_parameters)
|
| 415 |
# Combine all parameters
|
|
@@ -418,24 +469,29 @@ def generate_image_lowmem(
|
|
| 418 |
"width": image_width,
|
| 419 |
"guidance_scale": guidance_scale,
|
| 420 |
"num_inference_steps": num_inference_steps,
|
| 421 |
-
"generator": generator,
|
|
|
|
| 422 |
if additional_parameters:
|
| 423 |
generate_params.update(additional_parameters)
|
| 424 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
| 425 |
print(f"generate_params: {generate_params}")
|
| 426 |
# Generate the image
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
torch.cuda.empty_cache()
|
| 436 |
torch.cuda.ipc_collect()
|
| 437 |
print(torch.cuda.memory_summary(device=None, abbreviated=False))
|
| 438 |
-
|
| 439 |
return image
|
| 440 |
|
| 441 |
def generate_ai_image_local (
|
|
@@ -445,6 +501,7 @@ def generate_ai_image_local (
|
|
| 445 |
model="black-forest-labs/FLUX.1-dev",
|
| 446 |
lora_weights=None,
|
| 447 |
conditioned_image=None,
|
|
|
|
| 448 |
height=512,
|
| 449 |
width=912,
|
| 450 |
num_inference_steps=30,
|
|
@@ -453,7 +510,7 @@ def generate_ai_image_local (
|
|
| 453 |
pipeline_name="FluxPipeline",
|
| 454 |
strength=0.75,
|
| 455 |
progress=gr.Progress(track_tqdm=True)
|
| 456 |
-
):
|
| 457 |
print(f"Generating image with lowmem")
|
| 458 |
try:
|
| 459 |
if map_option != "Prompt":
|
|
@@ -496,12 +553,19 @@ def generate_ai_image_local (
|
|
| 496 |
print(f"Conditioned Image: {conditioned_image}")
|
| 497 |
print(f"Conditioned Image Strength: {strength}")
|
| 498 |
print(f"pipeline: {pipeline_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
image = generate_image_lowmem(
|
| 500 |
text=prompt,
|
| 501 |
model_name=model,
|
| 502 |
neg_prompt=negative_prompt,
|
| 503 |
lora_weights=lora_weights,
|
| 504 |
conditioned_image=conditioned_image,
|
|
|
|
| 505 |
image_width=width,
|
| 506 |
image_height=height,
|
| 507 |
guidance_scale=guidance_scale,
|
|
@@ -509,7 +573,8 @@ def generate_ai_image_local (
|
|
| 509 |
seed=seed,
|
| 510 |
pipeline_name=pipeline_name,
|
| 511 |
strength=strength,
|
| 512 |
-
additional_parameters=additional_parameters
|
|
|
|
| 513 |
)
|
| 514 |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
| 515 |
image.save(tmp.name, format="PNG")
|
|
@@ -518,11 +583,11 @@ def generate_ai_image_local (
|
|
| 518 |
return tmp.name
|
| 519 |
except Exception as e:
|
| 520 |
print(f"Error generating AI image: {e}")
|
| 521 |
-
|
| 522 |
return None
|
| 523 |
|
| 524 |
|
| 525 |
-
def generate_input_image_click(image_input, map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=
|
| 526 |
seed = get_seed(randomize_seed, seed)
|
| 527 |
|
| 528 |
# Get the model and LoRA weights
|
|
@@ -539,18 +604,28 @@ def generate_input_image_click(image_input, map_option, prompt_textbox_value, ne
|
|
| 539 |
print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n")
|
| 540 |
# use image_input as the conditioned_image if it is not None
|
| 541 |
elif image_input is not None:
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
|
|
|
| 545 |
|
| 546 |
# Convert image_format from a string split by ":" into two numbers divided
|
| 547 |
width_ratio, height_ratio = map(int, image_format.split(":"))
|
| 548 |
aspect_ratio = width_ratio / height_ratio
|
| 549 |
|
| 550 |
-
width, height = convert_ratio_to_dimensions(aspect_ratio,
|
| 551 |
pipeline = "FluxPipeline"
|
| 552 |
if conditioned_image is not None:
|
| 553 |
pipeline = "FluxImg2ImgPipeline"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
# Generate the AI image and get the image path
|
| 555 |
image_path = generate_ai_image_local(
|
| 556 |
map_option,
|
|
@@ -559,6 +634,7 @@ def generate_input_image_click(image_input, map_option, prompt_textbox_value, ne
|
|
| 559 |
model,
|
| 560 |
lora_weights,
|
| 561 |
conditioned_image,
|
|
|
|
| 562 |
strength=strength,
|
| 563 |
height=height,
|
| 564 |
width=width,
|
|
@@ -596,6 +672,23 @@ def update_prompt_visibility(map_option):
|
|
| 596 |
def update_prompt_notes(model_textbox_value):
|
| 597 |
return upd_prompt_notes(model_textbox_value)
|
| 598 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
def on_prerendered_gallery_selection(event_data: gr.SelectData):
|
| 600 |
global current_prerendered_image
|
| 601 |
selected_index = event_data.index
|
|
@@ -632,9 +725,12 @@ def update_sketch_dimensions(input_image, sketch_image):
|
|
| 632 |
sk_img_path, _ = get_image_from_dict(sketch_image)
|
| 633 |
sk_img = open_image(sk_img_path)
|
| 634 |
# Resize sketch image if dimensions don't match input image.
|
| 635 |
-
if in_img.size != sk_img.size:
|
| 636 |
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
|
| 637 |
-
|
|
|
|
|
|
|
|
|
|
| 638 |
|
| 639 |
def composite_with_control_sync(input_image, sketch_image, slider_value):
|
| 640 |
# Load the images using open_image() if they are provided as file paths.
|
|
@@ -655,7 +751,36 @@ def replace_input_with_sketch_image(sketch_image):
|
|
| 655 |
sketch, is_dict = get_image_from_dict(sketch_image)
|
| 656 |
return sketch
|
| 657 |
####################################### DEPTH ESTIMATION #######################################
|
| 658 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 659 |
|
| 660 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 661 |
"""
|
|
@@ -796,6 +921,7 @@ def generate_3d_asset_part2(depth_img, image_path, output_name, seed, steps, mod
|
|
| 796 |
depth_img = Image.open(depth_img).convert("RGBA")
|
| 797 |
# Preprocess and run the Trellis pipeline with fixed sampler settings
|
| 798 |
try:
|
|
|
|
| 799 |
processed_image = TRELLIS_PIPELINE.preprocess_image(resized_image, max_resolution=model_resolution)
|
| 800 |
outputs = TRELLIS_PIPELINE.run(
|
| 801 |
processed_image,
|
|
@@ -930,7 +1056,7 @@ examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac4
|
|
| 930 |
gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/","assets/"])
|
| 931 |
|
| 932 |
# Gradio Blocks Interface
|
| 933 |
-
with gr.Blocks(css_paths="
|
| 934 |
with gr.Row():
|
| 935 |
gr.Markdown("""
|
| 936 |
# HexaGrid Creator
|
|
@@ -987,7 +1113,8 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 987 |
key="imgInput",
|
| 988 |
image_mode=None,
|
| 989 |
format="PNG",
|
| 990 |
-
height=
|
|
|
|
| 991 |
)
|
| 992 |
with gr.Accordion("Sketch Pad", open = False, elem_id="sketchpd"):
|
| 993 |
with gr.Row():
|
|
@@ -997,23 +1124,21 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 997 |
#invert_colors=True,
|
| 998 |
#sources=['upload','canvas'],
|
| 999 |
#tool=['editor','select','color-sketch'],
|
| 1000 |
-
placeholder="Draw a sketch or upload an image.
|
| 1001 |
interactive=True,
|
| 1002 |
elem_classes="centered solid imgcontainer",
|
| 1003 |
key="imgSketch",
|
| 1004 |
image_mode="RGBA",
|
| 1005 |
format="PNG",
|
| 1006 |
-
brush=gr.Brush()
|
|
|
|
| 1007 |
)
|
| 1008 |
with gr.Row():
|
| 1009 |
with gr.Column(scale=1):
|
| 1010 |
-
sketch_replace_input_image_button = gr.Button(
|
| 1011 |
-
"Replace Input Image with sketch",
|
| 1012 |
-
elem_id="sketch_replace_input_image_button",
|
| 1013 |
-
elem_classes="solid"
|
| 1014 |
-
)
|
| 1015 |
sketch_alpha_composite_slider = gr.Slider(0,100,50,0.5, label="Sketch Transparancy", elem_id="alpha_composite_slider")
|
| 1016 |
btn_sketch_alpha_composite = gr.Button("Overlay Sketch on Input Image", elem_id="btn_sketchninput", elem_classes="solid")
|
|
|
|
| 1017 |
|
| 1018 |
with gr.Column():
|
| 1019 |
with gr.Accordion("Hex Coloring and Exclusion", open = False):
|
|
@@ -1063,7 +1188,8 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1063 |
examples=[[f] for f in constants.lut_files],
|
| 1064 |
inputs=[lut_filename],
|
| 1065 |
outputs=[lut_filename],
|
| 1066 |
-
label="Select a Filter (LUT) file. Populate the LUT File Name field"
|
|
|
|
| 1067 |
)
|
| 1068 |
|
| 1069 |
with gr.Row():
|
|
@@ -1093,8 +1219,20 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1093 |
value="Cossale/Frames2-Flex.1",
|
| 1094 |
elem_classes="solid",
|
| 1095 |
elem_id="inference_model",
|
|
|
|
| 1096 |
visible=False
|
| 1097 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1098 |
# Update map_options to a Dropdown with choices from constants.PROMPTS keys
|
| 1099 |
with gr.Row():
|
| 1100 |
with gr.Column():
|
|
@@ -1155,7 +1293,8 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1155 |
with gr.Row():
|
| 1156 |
with gr.Column(scale=2):
|
| 1157 |
# Gallery from PRE_RENDERED_IMAGES GOES HERE
|
| 1158 |
-
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images_by_quality(3,'thumbnail'), elem_id="gallery",
|
|
|
|
| 1159 |
with gr.Column():
|
| 1160 |
image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", minimum=0, maximum=1.0, value=0.85, step=0.01, interactive=True)
|
| 1161 |
replace_input_image_button = gr.Button(
|
|
@@ -1180,14 +1319,14 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1180 |
y_spacing = gr.Number(label="Adjust Vertical spacing", value=3, minimum=-200, maximum=200, precision=1)
|
| 1181 |
with gr.Row():
|
| 1182 |
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)")
|
| 1183 |
-
add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None)
|
| 1184 |
with gr.Row():
|
| 1185 |
custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,)
|
| 1186 |
custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False)
|
| 1187 |
with gr.Row():
|
| 1188 |
hex_text_info = gr.Markdown("""
|
| 1189 |
### Text Color uses the Border Color and Border Opacity, unless you use a custom list.
|
| 1190 |
-
### The Custom Text List and Custom Text Color List are comma separated lists.
|
| 1191 |
### The custom color list is a comma separated list of hex colors.
|
| 1192 |
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue"
|
| 1193 |
""", elem_id="hex_text_info", visible=False)
|
|
@@ -1230,8 +1369,8 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1230 |
add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary")
|
| 1231 |
with gr.Row():
|
| 1232 |
bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True)
|
| 1233 |
-
|
| 1234 |
-
with
|
| 1235 |
with gr.Row():
|
| 1236 |
depth_image_source = gr.Radio(
|
| 1237 |
label="Depth Image Source",
|
|
@@ -1249,7 +1388,7 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1249 |
video_resolution = gr.Slider(384, 768, value=480, step=32, label="Video Resolution (*danger*)", interactive=True)
|
| 1250 |
model_resolution = gr.Slider(512, 2304, value=1024, step=64, label="3D Model Resolution", interactive=True)
|
| 1251 |
with gr.Row():
|
| 1252 |
-
generate_3d_asset_button = gr.Button("Generate 3D Asset", elem_classes="solid", variant="secondary")
|
| 1253 |
with gr.Row():
|
| 1254 |
depth_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="DepthOutput",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True, height=400)
|
| 1255 |
with gr.Row():
|
|
@@ -1310,7 +1449,7 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1310 |
)
|
| 1311 |
generate_input_image.click(
|
| 1312 |
fn=generate_input_image_click,
|
| 1313 |
-
inputs=[input_image,map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False),
|
| 1314 |
outputs=[input_image, seed_slider], scroll_to_output=True
|
| 1315 |
).then(
|
| 1316 |
fn=update_sketch_dimensions,
|
|
@@ -1350,6 +1489,14 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1350 |
inputs=model_options,
|
| 1351 |
outputs=prompt_notes_label
|
| 1352 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1353 |
composite_button.click(
|
| 1354 |
fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity),
|
| 1355 |
inputs=[input_image, composite_color, composite_opacity],
|
|
@@ -1359,7 +1506,7 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1359 |
#use conditioned_image as the input_image for generate_input_image_click
|
| 1360 |
generate_input_image_from_gallery.click(
|
| 1361 |
fn=generate_input_image_click,
|
| 1362 |
-
inputs=[input_image, map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), image_guidance_stength, image_size_ratio],
|
| 1363 |
outputs=[input_image, seed_slider], scroll_to_output=True
|
| 1364 |
).then(
|
| 1365 |
fn=update_sketch_dimensions,
|
|
@@ -1414,7 +1561,18 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1414 |
# inputs=[depth_image_source, resized_width_slider, z_scale_slider, input_image, output_image, overlay_image, bordered_image_output],
|
| 1415 |
# outputs=[depth_map_output, model_output, model_file], scroll_to_output=True
|
| 1416 |
# )
|
| 1417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1418 |
# Chain the buttons
|
| 1419 |
generate_3d_asset_button.click(
|
| 1420 |
fn=generate_3d_asset_part1,
|
|
@@ -1470,14 +1628,23 @@ if __name__ == "__main__":
|
|
| 1470 |
|
| 1471 |
#-------------- ------------------------------------------------MODEL INITIALIZATION------------------------------------------------------------#
|
| 1472 |
# Load models once during module import
|
| 1473 |
-
|
| 1474 |
-
|
| 1475 |
-
|
| 1476 |
-
|
| 1477 |
-
|
| 1478 |
-
|
| 1479 |
-
|
| 1480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1481 |
hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False)
|
| 1482 |
hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered", 'e:/TMP'], favicon_path="./assets/favicon.ico", max_file_size="10mb")
|
| 1483 |
|
|
|
|
| 11 |
from easydict import EasyDict as edict
|
| 12 |
import utils.constants as constants
|
| 13 |
from haishoku.haishoku import Haishoku
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
|
| 16 |
from tempfile import NamedTemporaryFile
|
| 17 |
import atexit
|
| 18 |
import random
|
| 19 |
+
import accelerate
|
| 20 |
from transformers import AutoTokenizer, DPTImageProcessor, DPTForDepthEstimation
|
| 21 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 22 |
from trellis.representations import Gaussian, MeshExtractResult
|
|
|
|
| 41 |
get_filename,
|
| 42 |
pause,
|
| 43 |
convert_ratio_to_dimensions,
|
| 44 |
+
update_dimensions_on_ratio,
|
| 45 |
get_seed,
|
| 46 |
+
get_output_name
|
| 47 |
) #install_cuda_toolkit,install_torch, _get_output, setup_runtime_env)
|
| 48 |
|
| 49 |
from utils.image_utils import (
|
| 50 |
change_color,
|
| 51 |
open_image,
|
|
|
|
| 52 |
upscale_image,
|
| 53 |
lerp_imagemath,
|
| 54 |
shrink_and_paste_on_blank,
|
|
|
|
| 57 |
multiply_and_blend_images,
|
| 58 |
alpha_composite_with_control,
|
| 59 |
crop_and_resize_image,
|
| 60 |
+
resize_and_crop_image,
|
| 61 |
convert_to_rgba_png,
|
| 62 |
resize_image_with_aspect_ratio,
|
| 63 |
build_prerendered_images_by_quality,
|
| 64 |
+
get_image_from_dict,
|
| 65 |
+
calculate_optimal_fill_dimensions
|
| 66 |
)
|
| 67 |
|
| 68 |
from utils.hex_grid import (
|
|
|
|
| 85 |
|
| 86 |
from utils.lora_details import (
|
| 87 |
upd_prompt_notes,
|
| 88 |
+
upd_prompt_notes_by_index,
|
| 89 |
split_prompt_precisely,
|
| 90 |
approximate_token_count,
|
| 91 |
+
get_trigger_words,
|
| 92 |
+
is_lora_loaded,
|
| 93 |
+
get_lora_models
|
| 94 |
+
)
|
| 95 |
+
from diffusers import (
|
| 96 |
+
FluxPipeline,
|
| 97 |
+
FluxImg2ImgPipeline,
|
| 98 |
+
FluxControlPipeline,
|
| 99 |
+
FluxControlPipeline,
|
| 100 |
+
DiffusionPipeline,
|
| 101 |
+
AutoencoderTiny,
|
| 102 |
+
AutoencoderKL
|
| 103 |
)
|
|
|
|
| 104 |
|
| 105 |
PIPELINE_CLASSES = {
|
| 106 |
"FluxPipeline": FluxPipeline,
|
| 107 |
"FluxImg2ImgPipeline": FluxImg2ImgPipeline,
|
| 108 |
+
"FluxControlPipeline": FluxControlPipeline,
|
| 109 |
+
"FluxFillPipeline": FluxControlPipeline
|
| 110 |
}
|
| 111 |
|
| 112 |
from utils.version_info import (
|
|
|
|
| 118 |
#from utils.depth_estimation import (get_depth_map_from_state)
|
| 119 |
|
| 120 |
input_image_palette = []
|
| 121 |
+
current_prerendered_image = gr.State("./images/Beeuty-1.png")
|
| 122 |
user_dir = constants.TMPDIR
|
| 123 |
+
lora_models = get_lora_models()
|
| 124 |
+
selected_index = gr.State(value=-1)
|
| 125 |
+
|
| 126 |
+
image_processor: Optional[DPTImageProcessor] = None
|
| 127 |
+
depth_model: Optional[DPTForDepthEstimation] = None
|
| 128 |
+
TRELLIS_PIPELINE: Optional[TrellisImageTo3DPipeline] = None
|
| 129 |
+
pipe: Optional[Union[FluxPipeline, FluxImg2ImgPipeline, FluxControlPipeline]] = None
|
| 130 |
|
| 131 |
# Register the cleanup function
|
| 132 |
atexit.register(cleanup_temp_files)
|
|
|
|
| 231 |
default_model = model_textbox
|
| 232 |
return default_model, []
|
| 233 |
|
| 234 |
+
def set_pipeline(
|
| 235 |
+
model_name="black-forest-labs/FLUX.1-dev",
|
| 236 |
+
lora_weights=None,
|
| 237 |
+
pipeline_name="FluxPipeline",
|
| 238 |
+
progress=gr.Progress(track_tqdm=True)
|
| 239 |
+
):
|
| 240 |
+
global pipe
|
| 241 |
+
pbar = tqdm(total=7, desc="Pipeline and Model Load")
|
| 242 |
+
current_pipeline_name =pipe.name_or_path if pipe else None
|
| 243 |
+
current_pipeline_class = type(pipe).__name__ if pipe else None
|
| 244 |
+
if (current_pipeline_name != model_name) or (pipeline_name != current_pipeline_class):
|
| 245 |
+
pipe = None
|
| 246 |
+
gc.collect()
|
| 247 |
+
#from torch import cuda, bfloat16, float32, Generator, no_grad, backends
|
| 248 |
+
# Retrieve the pipeline class from the mapping
|
| 249 |
+
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
|
| 250 |
+
if not pipeline_class:
|
| 251 |
+
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
|
| 252 |
+
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
| 253 |
+
|
| 254 |
+
#initialize_cuda()
|
| 255 |
+
dvc = "cpu"
|
| 256 |
+
#from src.condition import Condition
|
| 257 |
+
pbar.update(1)
|
| 258 |
+
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
| 259 |
+
#print(f"\n {get_torch_info()}\n")
|
| 260 |
+
# Initialize the pipeline inside the context manager
|
| 261 |
+
pipe = pipeline_class.from_pretrained(
|
| 262 |
+
model_name,
|
| 263 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float16,
|
| 264 |
+
vae=good_vae
|
| 265 |
+
)
|
| 266 |
+
pbar.update(2)
|
| 267 |
+
pipe.to(dvc)
|
| 268 |
+
# Optionally, don't use CPU offload if not necessary
|
| 269 |
+
pbar.update(1)
|
| 270 |
+
|
| 271 |
+
# Access the tokenizer from the pipeline
|
| 272 |
+
tokenizer = pipe.tokenizer
|
| 273 |
+
|
| 274 |
+
# Check if add_prefix_space is set and convert to slow tokenizer if necessary
|
| 275 |
+
if getattr(tokenizer, 'add_prefix_space', False):
|
| 276 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, device_map = 'cpu')
|
| 277 |
+
# Update the pipeline's tokenizer
|
| 278 |
+
pipe.tokenizer = tokenizer
|
| 279 |
+
|
| 280 |
+
pbar.set_description("Loading LoRA weights")
|
| 281 |
+
pbar.update(1)
|
| 282 |
+
pipe.unload_lora_weights()
|
| 283 |
+
|
| 284 |
+
# Load LoRA weights
|
| 285 |
+
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
|
| 286 |
+
if lora_weights:
|
| 287 |
+
for lora_weight in lora_weights:
|
| 288 |
+
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
| 289 |
+
lora_weight_set = False
|
| 290 |
+
if lora_configs:
|
| 291 |
+
for config in lora_configs:
|
| 292 |
+
# Load LoRA weights with optional weight_name and adapter_name
|
| 293 |
+
if 'weight_name' in config:
|
| 294 |
+
weight_name = config.get("weight_name")
|
| 295 |
+
adapter_name = config.get("adapter_name")
|
| 296 |
+
lora_collection = config.get("lora_collection")
|
| 297 |
+
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
|
| 298 |
+
pipe.load_lora_weights(
|
| 299 |
+
lora_collection,
|
| 300 |
+
weight_name=weight_name,
|
| 301 |
+
adapter_name=adapter_name,
|
| 302 |
+
token=constants.HF_API_TOKEN
|
| 303 |
+
)
|
| 304 |
+
lora_weight_set = True
|
| 305 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
| 306 |
+
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
|
| 307 |
+
pipe.load_lora_weights(
|
| 308 |
+
lora_collection,
|
| 309 |
+
weight_name=weight_name,
|
| 310 |
+
token=constants.HF_API_TOKEN
|
| 311 |
+
)
|
| 312 |
+
lora_weight_set = True
|
| 313 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
| 314 |
+
elif weight_name and adapter_name and lora_weight_set == False:
|
| 315 |
+
pipe.load_lora_weights(
|
| 316 |
+
lora_weight,
|
| 317 |
+
weight_name=weight_name,
|
| 318 |
+
adapter_name=adapter_name,
|
| 319 |
+
token=constants.HF_API_TOKEN
|
| 320 |
+
)
|
| 321 |
+
lora_weight_set = True
|
| 322 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 323 |
+
elif weight_name and adapter_name==None and lora_weight_set == False:
|
| 324 |
+
pipe.load_lora_weights(
|
| 325 |
+
lora_weight,
|
| 326 |
+
weight_name=weight_name,
|
| 327 |
+
token=constants.HF_API_TOKEN
|
| 328 |
+
)
|
| 329 |
+
lora_weight_set = True
|
| 330 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 331 |
+
elif lora_weight_set == False:
|
| 332 |
+
pipe.load_lora_weights(
|
| 333 |
+
lora_weight,
|
| 334 |
+
token=constants.HF_API_TOKEN
|
| 335 |
+
)
|
| 336 |
+
lora_weight_set = True
|
| 337 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 338 |
+
# Apply 'pipe' configurations if present
|
| 339 |
+
if 'pipe' in config:
|
| 340 |
+
pipe_config = config['pipe']
|
| 341 |
+
for method_name, params in pipe_config.items():
|
| 342 |
+
method = getattr(pipe, method_name, None)
|
| 343 |
+
if method:
|
| 344 |
+
print(f"Applying pipe method: {method_name} with params: {params}")
|
| 345 |
+
method(**params)
|
| 346 |
+
else:
|
| 347 |
+
print(f"Method {method_name} not found in pipe.")
|
| 348 |
+
if 'condition_type' in config:
|
| 349 |
+
condition_type = config['condition_type']
|
| 350 |
+
if condition_type == "coloring":
|
| 351 |
+
#pipe.enable_coloring()
|
| 352 |
+
print("\nEnabled coloring.\n")
|
| 353 |
+
elif condition_type == "deblurring":
|
| 354 |
+
#pipe.enable_deblurring()
|
| 355 |
+
print("\nEnabled deblurring.\n")
|
| 356 |
+
elif condition_type == "fill":
|
| 357 |
+
#pipe.enable_fill()
|
| 358 |
+
print("\nEnabled fill.\n")
|
| 359 |
+
elif condition_type == "depth":
|
| 360 |
+
#pipe.enable_depth()
|
| 361 |
+
print("\nEnabled depth.\n")
|
| 362 |
+
elif condition_type == "canny":
|
| 363 |
+
#pipe.enable_canny()
|
| 364 |
+
print("\nEnabled canny.\n")
|
| 365 |
+
elif condition_type == "subject":
|
| 366 |
+
#pipe.enable_subject()
|
| 367 |
+
print("\nEnabled subject.\n")
|
| 368 |
+
else:
|
| 369 |
+
print(f"Condition type {condition_type} not implemented.")
|
| 370 |
+
else:
|
| 371 |
+
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
| 372 |
+
pbar.set_description("Pipe Loaded.")
|
| 373 |
+
pbar.set_postfix({"Status": "Done"})
|
| 374 |
+
pbar.update(1)
|
| 375 |
+
pbar.close()
|
| 376 |
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
@spaces.GPU(duration=200, progress=gr.Progress(track_tqdm=True))
|
| 379 |
def generate_image_lowmem(
|
|
|
|
| 382 |
model_name="black-forest-labs/FLUX.1-dev",
|
| 383 |
lora_weights=None,
|
| 384 |
conditioned_image=None,
|
| 385 |
+
mask_image=None,
|
| 386 |
image_width=1368,
|
| 387 |
image_height=848,
|
| 388 |
guidance_scale=3.5,
|
|
|
|
| 394 |
additional_parameters=None,
|
| 395 |
progress=gr.Progress(track_tqdm=True)
|
| 396 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
with torch.no_grad():
|
| 398 |
+
#global pipe
|
| 399 |
+
global device
|
| 400 |
+
pipe.to(device)
|
| 401 |
+
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 402 |
+
if flash_attention_enabled == False:
|
| 403 |
+
#Enable xFormers memory-efficient attention (optional)
|
| 404 |
+
#pipe.enable_xformers_memory_efficient_attention()
|
| 405 |
+
print("\nEnabled xFormers memory-efficient attention.\n")
|
| 406 |
+
else:
|
| 407 |
+
pipe.attn_implementation="flash_attention_2"
|
| 408 |
+
print("\nEnabled flash_attention_2.\n")
|
| 409 |
# alternative version that may be more efficient
|
| 410 |
# pipe.enable_sequential_cpu_offload()
|
| 411 |
if pipeline_name == "FluxPipeline":
|
|
|
|
| 415 |
else:
|
| 416 |
pipe.enable_model_cpu_offload()
|
| 417 |
|
|
|
|
|
|
|
| 418 |
|
| 419 |
+
mask_parameters = {}
|
| 420 |
+
# Load the mask image if provided
|
| 421 |
+
if (pipeline_name == "FluxFillPipeline"):
|
| 422 |
+
mask_image = open_image(mask_image).convert("RGBA")
|
| 423 |
+
mask_condition_type = constants.condition_type[5]
|
| 424 |
+
guidance_scale = 30
|
| 425 |
+
num_inference_steps=50
|
| 426 |
+
max_sequence_length=512
|
| 427 |
+
print(f"\nAdded mask image.\n {mask_image.size}")
|
| 428 |
+
mask_parameters ={
|
| 429 |
+
"mask_image": mask_image,
|
| 430 |
+
}
|
|
|
|
|
|
|
|
|
|
| 431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
# Set the random seed for reproducibility
|
| 433 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 434 |
+
#conditions = []
|
| 435 |
if conditioned_image is not None:
|
| 436 |
+
conditioned_image = resize_and_crop_image(conditioned_image, image_width, image_height)
|
| 437 |
+
#condition = Condition(constants.condition_type[2], conditioned_image)
|
| 438 |
+
#conditions.append(condition)
|
| 439 |
print(f"\nAdded conditioned image.\n {conditioned_image.size}")
|
| 440 |
# Prepare the parameters for image generation
|
| 441 |
additional_parameters ={
|
| 442 |
"strength": strength,
|
| 443 |
"image": conditioned_image,
|
| 444 |
}
|
| 445 |
+
additional_parameters.update(mask_parameters)
|
| 446 |
else:
|
| 447 |
print("\nNo conditioned image provided.")
|
| 448 |
if neg_prompt!=None:
|
|
|
|
| 456 |
prompt, prompt2 = split_prompt_precisely(text)
|
| 457 |
prompt_parameters = {
|
| 458 |
"prompt" : prompt,
|
| 459 |
+
"prompt_2": prompt2,
|
| 460 |
}
|
| 461 |
else:
|
| 462 |
prompt_parameters = {
|
| 463 |
+
"prompt" :text,
|
| 464 |
}
|
| 465 |
additional_parameters.update(prompt_parameters)
|
| 466 |
# Combine all parameters
|
|
|
|
| 469 |
"width": image_width,
|
| 470 |
"guidance_scale": guidance_scale,
|
| 471 |
"num_inference_steps": num_inference_steps,
|
| 472 |
+
"generator": generator,
|
| 473 |
+
}
|
| 474 |
if additional_parameters:
|
| 475 |
generate_params.update(additional_parameters)
|
| 476 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
| 477 |
print(f"generate_params: {generate_params}")
|
| 478 |
# Generate the image
|
| 479 |
+
try:
|
| 480 |
+
result = pipe(**generate_params) #generate_image(pipe,generate_params)
|
| 481 |
+
image = result.images[0]
|
| 482 |
+
# Clean up
|
| 483 |
+
del result
|
| 484 |
+
except Exception as e:
|
| 485 |
+
print(f"Error generating image: {e}")
|
| 486 |
+
image = open_image("./images/Beeuty-1.png")
|
| 487 |
+
#del conditions
|
| 488 |
+
del generator
|
| 489 |
+
# Move the pipeline and clear cache
|
| 490 |
+
pipe.to("cpu")
|
| 491 |
torch.cuda.empty_cache()
|
| 492 |
torch.cuda.ipc_collect()
|
| 493 |
print(torch.cuda.memory_summary(device=None, abbreviated=False))
|
| 494 |
+
gc.collect()
|
| 495 |
return image
|
| 496 |
|
| 497 |
def generate_ai_image_local (
|
|
|
|
| 501 |
model="black-forest-labs/FLUX.1-dev",
|
| 502 |
lora_weights=None,
|
| 503 |
conditioned_image=None,
|
| 504 |
+
mask_image=None,
|
| 505 |
height=512,
|
| 506 |
width=912,
|
| 507 |
num_inference_steps=30,
|
|
|
|
| 510 |
pipeline_name="FluxPipeline",
|
| 511 |
strength=0.75,
|
| 512 |
progress=gr.Progress(track_tqdm=True)
|
| 513 |
+
):
|
| 514 |
print(f"Generating image with lowmem")
|
| 515 |
try:
|
| 516 |
if map_option != "Prompt":
|
|
|
|
| 553 |
print(f"Conditioned Image: {conditioned_image}")
|
| 554 |
print(f"Conditioned Image Strength: {strength}")
|
| 555 |
print(f"pipeline: {pipeline_name}")
|
| 556 |
+
set_pipeline(
|
| 557 |
+
model_name=model,
|
| 558 |
+
lora_weights=lora_weights,
|
| 559 |
+
pipeline_name=pipeline_name,
|
| 560 |
+
progress=progress
|
| 561 |
+
)
|
| 562 |
image = generate_image_lowmem(
|
| 563 |
text=prompt,
|
| 564 |
model_name=model,
|
| 565 |
neg_prompt=negative_prompt,
|
| 566 |
lora_weights=lora_weights,
|
| 567 |
conditioned_image=conditioned_image,
|
| 568 |
+
mask_image=mask_image,
|
| 569 |
image_width=width,
|
| 570 |
image_height=height,
|
| 571 |
guidance_scale=guidance_scale,
|
|
|
|
| 573 |
seed=seed,
|
| 574 |
pipeline_name=pipeline_name,
|
| 575 |
strength=strength,
|
| 576 |
+
additional_parameters=additional_parameters,
|
| 577 |
+
progress=progress
|
| 578 |
)
|
| 579 |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
| 580 |
image.save(tmp.name, format="PNG")
|
|
|
|
| 583 |
return tmp.name
|
| 584 |
except Exception as e:
|
| 585 |
print(f"Error generating AI image: {e}")
|
| 586 |
+
gc.collect()
|
| 587 |
return None
|
| 588 |
|
| 589 |
|
| 590 |
+
def generate_input_image_click(image_input, map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, mask_image=None, strength=0.5, image_format="16:9", scale_factor=constants.SCALE_FACTOR, progress=gr.Progress(track_tqdm=True)):
|
| 591 |
seed = get_seed(randomize_seed, seed)
|
| 592 |
|
| 593 |
# Get the model and LoRA weights
|
|
|
|
| 604 |
print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n")
|
| 605 |
# use image_input as the conditioned_image if it is not None
|
| 606 |
elif image_input is not None:
|
| 607 |
+
file_path, is_dict = get_image_from_dict(image_input)
|
| 608 |
+
conditioned_image = open_image(file_path).convert("RGB")
|
| 609 |
+
print(f"Conditioned Image set to modify Input Image!\nClear to generate new image from layered image: {is_dict}\n")
|
| 610 |
+
gr.Info(f"Conditioned Image set to modify Input Image! Clear to generate new image. Layered: {is_dict}",duration=5)
|
| 611 |
|
| 612 |
# Convert image_format from a string split by ":" into two numbers divided
|
| 613 |
width_ratio, height_ratio = map(int, image_format.split(":"))
|
| 614 |
aspect_ratio = width_ratio / height_ratio
|
| 615 |
|
| 616 |
+
width, height = convert_ratio_to_dimensions(aspect_ratio, constants.BASE_HEIGHT)
|
| 617 |
pipeline = "FluxPipeline"
|
| 618 |
if conditioned_image is not None:
|
| 619 |
pipeline = "FluxImg2ImgPipeline"
|
| 620 |
+
|
| 621 |
+
if (model == "black-forest-labs/FLUX.1-Fill-dev"):
|
| 622 |
+
pipeline = "FluxFillPipeline"
|
| 623 |
+
width, height = calculate_optimal_fill_dimensions(conditioned_image)
|
| 624 |
+
mask_image = get_image_from_dict(mask_image)
|
| 625 |
+
print(f"Optimal Dimensions: {width} x {height} \n")
|
| 626 |
+
else:
|
| 627 |
+
mask_image = None
|
| 628 |
+
|
| 629 |
# Generate the AI image and get the image path
|
| 630 |
image_path = generate_ai_image_local(
|
| 631 |
map_option,
|
|
|
|
| 634 |
model,
|
| 635 |
lora_weights,
|
| 636 |
conditioned_image,
|
| 637 |
+
mask_image,
|
| 638 |
strength=strength,
|
| 639 |
height=height,
|
| 640 |
width=width,
|
|
|
|
| 672 |
def update_prompt_notes(model_textbox_value):
|
| 673 |
return upd_prompt_notes(model_textbox_value)
|
| 674 |
|
| 675 |
+
def update_selection(evt: gr.SelectData, aspect_ratio):
|
| 676 |
+
selected_lora = constants.LORAS[evt.index]
|
| 677 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
| 678 |
+
new_aspect_ratio = aspect_ratio # default to the currently selected aspect ratio
|
| 679 |
+
lora_repo = selected_lora["repo"]
|
| 680 |
+
#updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
|
| 681 |
+
# If the selected LoRA model specifies an aspect ratio, use it to update dimensions.
|
| 682 |
+
if "aspect" in selected_lora:
|
| 683 |
+
try:
|
| 684 |
+
new_aspect_ratio = selected_lora["aspect"]
|
| 685 |
+
# Recalculate dimensions using constants.BASE_HEIGHT as the height reference.
|
| 686 |
+
new_width, new_height = update_dimensions_on_ratio(new_aspect_ratio, constants.BASE_HEIGHT)
|
| 687 |
+
# (Optionally, you could log or use new_width/new_height as needed)
|
| 688 |
+
except Exception as e:
|
| 689 |
+
print(f"\nError in update selection aspect ratios: {e}\nSkipping")
|
| 690 |
+
return [gr.update(value=lora_repo), gr.update(value=lora_repo), evt.index, new_aspect_ratio, upd_prompt_notes_by_index(evt.index)]
|
| 691 |
+
|
| 692 |
def on_prerendered_gallery_selection(event_data: gr.SelectData):
|
| 693 |
global current_prerendered_image
|
| 694 |
selected_index = event_data.index
|
|
|
|
| 725 |
sk_img_path, _ = get_image_from_dict(sketch_image)
|
| 726 |
sk_img = open_image(sk_img_path)
|
| 727 |
# Resize sketch image if dimensions don't match input image.
|
| 728 |
+
if (in_img) and (in_img.size != sk_img.size):
|
| 729 |
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
|
| 730 |
+
return [sk_img, gr.update(width=in_img.width, height=in_img.height)]
|
| 731 |
+
else:
|
| 732 |
+
return [sk_img, gr.update()]
|
| 733 |
+
|
| 734 |
|
| 735 |
def composite_with_control_sync(input_image, sketch_image, slider_value):
|
| 736 |
# Load the images using open_image() if they are provided as file paths.
|
|
|
|
| 751 |
sketch, is_dict = get_image_from_dict(sketch_image)
|
| 752 |
return sketch
|
| 753 |
####################################### DEPTH ESTIMATION #######################################
|
| 754 |
+
def load_3d_models(is_open: bool = True) -> bool:
|
| 755 |
+
if is_open:
|
| 756 |
+
gr.Info("Loading 3D models...")
|
| 757 |
+
global image_processor, depth_model, TRELLIS_PIPELINE
|
| 758 |
+
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 759 |
+
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True)
|
| 760 |
+
TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
| 761 |
+
try:
|
| 762 |
+
# Preload with a dummy image to finalize initialization
|
| 763 |
+
TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((256, 256, 3), dtype=np.uint8)))
|
| 764 |
+
except Exception as e:
|
| 765 |
+
print(f"Error preloading TRELLIS_PIPELINE: {e}")
|
| 766 |
+
print("3D models loaded")
|
| 767 |
+
gr.Info("3D models loaded.")
|
| 768 |
+
return gr.update(interactive = is_open)
|
| 769 |
+
|
| 770 |
+
def unload_3d_models(is_open: bool = False) -> bool:
|
| 771 |
+
if not is_open:
|
| 772 |
+
gr.Info("Unloading 3D models...")
|
| 773 |
+
global image_processor, depth_model, TRELLIS_PIPELINE
|
| 774 |
+
TRELLIS_PIPELINE.to("cpu")
|
| 775 |
+
del image_processor
|
| 776 |
+
del depth_model
|
| 777 |
+
del TRELLIS_PIPELINE
|
| 778 |
+
#torch.cuda.empty_cache()
|
| 779 |
+
#torch.cuda.ipc_collect()
|
| 780 |
+
gc.collect()
|
| 781 |
+
print("3D models unloaded and CUDA memory freed")
|
| 782 |
+
gr.Info("3D models unloaded.")
|
| 783 |
+
return gr.update(interactive = is_open)
|
| 784 |
|
| 785 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 786 |
"""
|
|
|
|
| 921 |
depth_img = Image.open(depth_img).convert("RGBA")
|
| 922 |
# Preprocess and run the Trellis pipeline with fixed sampler settings
|
| 923 |
try:
|
| 924 |
+
TRELLIS_PIPELINE.to(device)
|
| 925 |
processed_image = TRELLIS_PIPELINE.preprocess_image(resized_image, max_resolution=model_resolution)
|
| 926 |
outputs = TRELLIS_PIPELINE.run(
|
| 927 |
processed_image,
|
|
|
|
| 1056 |
gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/","assets/"])
|
| 1057 |
|
| 1058 |
# Gradio Blocks Interface
|
| 1059 |
+
with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',delete_cache=(21600,86400)) as hexaGrid:
|
| 1060 |
with gr.Row():
|
| 1061 |
gr.Markdown("""
|
| 1062 |
# HexaGrid Creator
|
|
|
|
| 1113 |
key="imgInput",
|
| 1114 |
image_mode=None,
|
| 1115 |
format="PNG",
|
| 1116 |
+
height=450,
|
| 1117 |
+
width=800
|
| 1118 |
)
|
| 1119 |
with gr.Accordion("Sketch Pad", open = False, elem_id="sketchpd"):
|
| 1120 |
with gr.Row():
|
|
|
|
| 1124 |
#invert_colors=True,
|
| 1125 |
#sources=['upload','canvas'],
|
| 1126 |
#tool=['editor','select','color-sketch'],
|
| 1127 |
+
placeholder="Draw a sketch or upload an image.",
|
| 1128 |
interactive=True,
|
| 1129 |
elem_classes="centered solid imgcontainer",
|
| 1130 |
key="imgSketch",
|
| 1131 |
image_mode="RGBA",
|
| 1132 |
format="PNG",
|
| 1133 |
+
brush=gr.Brush(),
|
| 1134 |
+
canvas_size=(640,360)
|
| 1135 |
)
|
| 1136 |
with gr.Row():
|
| 1137 |
with gr.Column(scale=1):
|
| 1138 |
+
sketch_replace_input_image_button = gr.Button("Replace Input Image with sketch", elem_id="sketch_replace_input_image_button", elem_classes="solid")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1139 |
sketch_alpha_composite_slider = gr.Slider(0,100,50,0.5, label="Sketch Transparancy", elem_id="alpha_composite_slider")
|
| 1140 |
btn_sketch_alpha_composite = gr.Button("Overlay Sketch on Input Image", elem_id="btn_sketchninput", elem_classes="solid")
|
| 1141 |
+
gr.Markdown("### Do Not add to image if using a fill model")
|
| 1142 |
|
| 1143 |
with gr.Column():
|
| 1144 |
with gr.Accordion("Hex Coloring and Exclusion", open = False):
|
|
|
|
| 1188 |
examples=[[f] for f in constants.lut_files],
|
| 1189 |
inputs=[lut_filename],
|
| 1190 |
outputs=[lut_filename],
|
| 1191 |
+
label="Select a Filter (LUT) file. Populate the LUT File Name field",
|
| 1192 |
+
examples_per_page = 15,
|
| 1193 |
)
|
| 1194 |
|
| 1195 |
with gr.Row():
|
|
|
|
| 1219 |
value="Cossale/Frames2-Flex.1",
|
| 1220 |
elem_classes="solid",
|
| 1221 |
elem_id="inference_model",
|
| 1222 |
+
lines=2,
|
| 1223 |
visible=False
|
| 1224 |
)
|
| 1225 |
+
with gr.Accordion("Choose Style Model*", open=False):
|
| 1226 |
+
lora_gallery = gr.Gallery(
|
| 1227 |
+
[(open_image(image_path), title) for image_path, title in lora_models],
|
| 1228 |
+
label="Styles",
|
| 1229 |
+
allow_preview=False, preview=False ,
|
| 1230 |
+
columns=2,
|
| 1231 |
+
elem_id="lora_gallery",
|
| 1232 |
+
show_share_button=False,
|
| 1233 |
+
elem_classes="solid", type="filepath",
|
| 1234 |
+
object_fit="contain", height="auto", format="png",
|
| 1235 |
+
)
|
| 1236 |
# Update map_options to a Dropdown with choices from constants.PROMPTS keys
|
| 1237 |
with gr.Row():
|
| 1238 |
with gr.Column():
|
|
|
|
| 1293 |
with gr.Row():
|
| 1294 |
with gr.Column(scale=2):
|
| 1295 |
# Gallery from PRE_RENDERED_IMAGES GOES HERE
|
| 1296 |
+
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images_by_quality(3,'thumbnail'), elem_id="gallery",
|
| 1297 |
+
elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)
|
| 1298 |
with gr.Column():
|
| 1299 |
image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", minimum=0, maximum=1.0, value=0.85, step=0.01, interactive=True)
|
| 1300 |
replace_input_image_button = gr.Button(
|
|
|
|
| 1319 |
y_spacing = gr.Number(label="Adjust Vertical spacing", value=3, minimum=-200, maximum=200, precision=1)
|
| 1320 |
with gr.Row():
|
| 1321 |
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)")
|
| 1322 |
+
add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Column Letter, Row Number", "Column Number, Row Letter", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None)
|
| 1323 |
with gr.Row():
|
| 1324 |
custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,)
|
| 1325 |
custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False)
|
| 1326 |
with gr.Row():
|
| 1327 |
hex_text_info = gr.Markdown("""
|
| 1328 |
### Text Color uses the Border Color and Border Opacity, unless you use a custom list.
|
| 1329 |
+
### The Custom Text List and Custom Text Color List are repeating comma separated lists.
|
| 1330 |
### The custom color list is a comma separated list of hex colors.
|
| 1331 |
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue"
|
| 1332 |
""", elem_id="hex_text_info", visible=False)
|
|
|
|
| 1369 |
add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary")
|
| 1370 |
with gr.Row():
|
| 1371 |
bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True)
|
| 1372 |
+
accordian_3d = gr.Accordion("Height Maps and 3D", open=False, elem_id="accordian_3d")
|
| 1373 |
+
with accordian_3d:
|
| 1374 |
with gr.Row():
|
| 1375 |
depth_image_source = gr.Radio(
|
| 1376 |
label="Depth Image Source",
|
|
|
|
| 1388 |
video_resolution = gr.Slider(384, 768, value=480, step=32, label="Video Resolution (*danger*)", interactive=True)
|
| 1389 |
model_resolution = gr.Slider(512, 2304, value=1024, step=64, label="3D Model Resolution", interactive=True)
|
| 1390 |
with gr.Row():
|
| 1391 |
+
generate_3d_asset_button = gr.Button("Generate 3D Asset", elem_classes="solid", variant="secondary", interactive=False)
|
| 1392 |
with gr.Row():
|
| 1393 |
depth_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="DepthOutput",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True, height=400)
|
| 1394 |
with gr.Row():
|
|
|
|
| 1449 |
)
|
| 1450 |
generate_input_image.click(
|
| 1451 |
fn=generate_input_image_click,
|
| 1452 |
+
inputs=[input_image,map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), sketch_image, image_guidance_stength, image_size_ratio],
|
| 1453 |
outputs=[input_image, seed_slider], scroll_to_output=True
|
| 1454 |
).then(
|
| 1455 |
fn=update_sketch_dimensions,
|
|
|
|
| 1489 |
inputs=model_options,
|
| 1490 |
outputs=prompt_notes_label
|
| 1491 |
)
|
| 1492 |
+
lora_gallery.select(
|
| 1493 |
+
fn=update_selection,
|
| 1494 |
+
inputs=[image_size_ratio],
|
| 1495 |
+
outputs=[model_textbox, model_options, gr.State(selected_index), image_size_ratio, prompt_notes_label]
|
| 1496 |
+
)
|
| 1497 |
+
|
| 1498 |
+
#################### model end ########################################
|
| 1499 |
+
|
| 1500 |
composite_button.click(
|
| 1501 |
fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity),
|
| 1502 |
inputs=[input_image, composite_color, composite_opacity],
|
|
|
|
| 1506 |
#use conditioned_image as the input_image for generate_input_image_click
|
| 1507 |
generate_input_image_from_gallery.click(
|
| 1508 |
fn=generate_input_image_click,
|
| 1509 |
+
inputs=[input_image, map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), sketch_image , image_guidance_stength, image_size_ratio],
|
| 1510 |
outputs=[input_image, seed_slider], scroll_to_output=True
|
| 1511 |
).then(
|
| 1512 |
fn=update_sketch_dimensions,
|
|
|
|
| 1561 |
# inputs=[depth_image_source, resized_width_slider, z_scale_slider, input_image, output_image, overlay_image, bordered_image_output],
|
| 1562 |
# outputs=[depth_map_output, model_output, model_file], scroll_to_output=True
|
| 1563 |
# )
|
| 1564 |
+
accordian_3d.expand(
|
| 1565 |
+
fn=load_3d_models,
|
| 1566 |
+
trigger_mode="always_last",
|
| 1567 |
+
outputs=[generate_3d_asset_button],
|
| 1568 |
+
show_api=False
|
| 1569 |
+
)
|
| 1570 |
+
accordian_3d.collapse(
|
| 1571 |
+
fn=unload_3d_models,
|
| 1572 |
+
trigger_mode="always_last",
|
| 1573 |
+
outputs=[generate_3d_asset_button],
|
| 1574 |
+
show_api=False
|
| 1575 |
+
)
|
| 1576 |
# Chain the buttons
|
| 1577 |
generate_3d_asset_button.click(
|
| 1578 |
fn=generate_3d_asset_part1,
|
|
|
|
| 1628 |
|
| 1629 |
#-------------- ------------------------------------------------MODEL INITIALIZATION------------------------------------------------------------#
|
| 1630 |
# Load models once during module import
|
| 1631 |
+
dtype = torch.bfloat16
|
| 1632 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 1633 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
| 1634 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 1635 |
+
#pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=good_vae).to(device)
|
| 1636 |
+
#pipe.enable_model_cpu_offload()
|
| 1637 |
+
#pipe.vae.enable_slicing()
|
| 1638 |
+
#pipe.attn_implementation="flash_attention_2"
|
| 1639 |
+
|
| 1640 |
+
# image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 1641 |
+
# depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True)
|
| 1642 |
+
# TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
| 1643 |
+
# TRELLIS_PIPELINE.to(device)
|
| 1644 |
+
# try:
|
| 1645 |
+
# TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((64, 64, 3), dtype=np.uint8))) # Preload rembg
|
| 1646 |
+
# except:
|
| 1647 |
+
# pass
|
| 1648 |
hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False)
|
| 1649 |
hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered", 'e:/TMP'], favicon_path="./assets/favicon.ico", max_file_size="10mb")
|
| 1650 |
|
images/prerendered/th/FLUX.1-Fill-dev.png
ADDED
|
Git LFS Details
|
images/prerendered/th/FLUX.1-dev.png
ADDED
|
Git LFS Details
|
images/prerendered/th/FLUX.1-schnell.png
ADDED
|
Git LFS Details
|
images/prerendered/th/Flex.1-alpha.png
ADDED
|
Git LFS Details
|
style_20250128.css → style_20250314.css
RENAMED
|
@@ -20,9 +20,15 @@
|
|
| 20 |
background-color: rgba(242, 218, 163, 0.62);
|
| 21 |
}
|
| 22 |
|
| 23 |
-
.dark .gradio-container.gradio-container-5-
|
| 24 |
background-color: rgba(41, 18, 5, 0.38) !important;
|
| 25 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
.small {
|
| 28 |
font-size: smaller !important;
|
|
@@ -72,26 +78,26 @@ a {
|
|
| 72 |
max-width: 75px;
|
| 73 |
}
|
| 74 |
|
| 75 |
-
#gallery .thumbnails {
|
| 76 |
flex-direction: column !important;
|
| 77 |
display: inline-flex !important;
|
| 78 |
flex-wrap: wrap !important;
|
| 79 |
position: relative !important;
|
| 80 |
}
|
| 81 |
|
| 82 |
-
#gallery caption.caption {
|
| 83 |
flex-direction: row !important;
|
| 84 |
display: inline-flex !important;
|
| 85 |
flex-wrap: wrap;
|
| 86 |
white-space: unset !important;
|
| 87 |
}
|
| 88 |
|
| 89 |
-
#gallery .image-button img.with-caption {
|
| 90 |
object-fit: cover !important;
|
| 91 |
object-position: center !important;
|
| 92 |
}
|
| 93 |
|
| 94 |
-
#gallery button.preview {
|
| 95 |
position: relative !important;
|
| 96 |
}
|
| 97 |
|
|
|
|
| 20 |
background-color: rgba(242, 218, 163, 0.62);
|
| 21 |
}
|
| 22 |
|
| 23 |
+
.dark .gradio-container.gradio-container-5-21-0 .contain .intro .prose {
|
| 24 |
background-color: rgba(41, 18, 5, 0.38) !important;
|
| 25 |
}
|
| 26 |
+
.toast-body.info {
|
| 27 |
+
background-color: rgba(242, 218, 163, 0.75);
|
| 28 |
+
}
|
| 29 |
+
.dark .toast-body.info {
|
| 30 |
+
background-color: rgba(128, 128, 128, 0.75);
|
| 31 |
+
}
|
| 32 |
|
| 33 |
.small {
|
| 34 |
font-size: smaller !important;
|
|
|
|
| 78 |
max-width: 75px;
|
| 79 |
}
|
| 80 |
|
| 81 |
+
#gallery .thumbnails, #lora_gallery .thumbnails {
|
| 82 |
flex-direction: column !important;
|
| 83 |
display: inline-flex !important;
|
| 84 |
flex-wrap: wrap !important;
|
| 85 |
position: relative !important;
|
| 86 |
}
|
| 87 |
|
| 88 |
+
#gallery caption.caption, #lora_gallery caption.caption {
|
| 89 |
flex-direction: row !important;
|
| 90 |
display: inline-flex !important;
|
| 91 |
flex-wrap: wrap;
|
| 92 |
white-space: unset !important;
|
| 93 |
}
|
| 94 |
|
| 95 |
+
#gallery .image-button img.with-caption, #lora_gallery .image-button img.with-caption {
|
| 96 |
object-fit: cover !important;
|
| 97 |
object-position: center !important;
|
| 98 |
}
|
| 99 |
|
| 100 |
+
#gallery button.preview, #lora_gallery button.preview {
|
| 101 |
position: relative !important;
|
| 102 |
}
|
| 103 |
|
utils/constants.py
CHANGED
|
@@ -62,6 +62,8 @@ if not HF_API_TOKEN:
|
|
| 62 |
default_lut_example_img = "./LUT/daisy.jpg"
|
| 63 |
MAX_SEED = np.iinfo(np.int32).max
|
| 64 |
TARGET_SIZE = (2688,1536)
|
|
|
|
|
|
|
| 65 |
TMPDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 66 |
os.makedirs(TMPDIR, exist_ok=True)
|
| 67 |
|
|
@@ -185,7 +187,7 @@ PRE_RENDERED_MAPS_JSON_LEVELS = {
|
|
| 185 |
|
| 186 |
pre_rendered_maps_paths = [
|
| 187 |
map_file['file'].replace("\\", "/")
|
| 188 |
-
for
|
| 189 |
PRE_RENDERED_MAPS_JSON_LEVELS.items(),
|
| 190 |
key=lambda x: (
|
| 191 |
x[1]['quality'],
|
|
@@ -199,43 +201,59 @@ pre_rendered_maps_paths_api_file = [f"./gradio_api/file={map_path}" for map_path
|
|
| 199 |
MODELS = [
|
| 200 |
"black-forest-labs/FLUX.1-schnell",
|
| 201 |
"black-forest-labs/FLUX.1-dev",
|
| 202 |
-
"ostris/Flex.1-alpha"
|
|
|
|
| 203 |
]
|
| 204 |
# Available LoRA weights
|
| 205 |
LORA_WEIGHTS = [
|
| 206 |
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design",
|
|
|
|
| 207 |
"Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1",
|
| 208 |
"Cossale/Frames2-Flex.1",
|
|
|
|
| 209 |
"XLabs-AI/flux-lora-collection/anime_lora.safetensors",
|
| 210 |
"XLabs-AI/flux-lora-collection/scenery_lora.safetensors",
|
| 211 |
"XLabs-AI/flux-lora-collection/disney_lora.safetensors",
|
| 212 |
-
"XLabs-AI/flux-RealismLora"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
]
|
| 214 |
|
| 215 |
# Map each LoRA weight to its corresponding model
|
| 216 |
LORA_TO_MODEL = {
|
| 217 |
"Yuanshi/OminiControl": "black-forest-labs/FLUX.1-schnell",
|
| 218 |
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design": "black-forest-labs/FLUX.1-dev",
|
|
|
|
| 219 |
"Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1": "black-forest-labs/FLUX.1-dev",
|
| 220 |
"Cossale/Frames2-Flex.1": "ostris/Flex.1-alpha",
|
| 221 |
"AlekseyCalvin/HSTcolorFlexAlpha": "ostris/Flex.1-alpha",
|
| 222 |
"XLabs-AI/flux-lora-collection/anime_lora.safetensors":"black-forest-labs/FLUX.1-dev",
|
| 223 |
"XLabs-AI/flux-lora-collection/scenery_lora.safetensors":"black-forest-labs/FLUX.1-dev",
|
| 224 |
"XLabs-AI/flux-lora-collection/disney_lora.safetensors":"black-forest-labs/FLUX.1-dev",
|
| 225 |
-
"XLabs-AI/flux-RealismLora":"black-forest-labs/FLUX.1-dev"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
}
|
| 227 |
condition_type = ["depth", "canny", "subject", "coloring", "deblurring", "fill", "redux"]
|
|
|
|
| 228 |
# Detailed LoRA weight configurations
|
| 229 |
LORA_DETAILS = {
|
| 230 |
"AlekseyCalvin/HSTcolorFlexAlpha" : [
|
| 231 |
{
|
| 232 |
-
"trigger_words": "(6kStepsCkpt)
|
| 233 |
},
|
| 234 |
{
|
| 235 |
"weight_name": "HSToricColorFlex_6000steps_LoRAforFluxOrFlex_32dim64alpha.safetensors",
|
| 236 |
},
|
| 237 |
{
|
| 238 |
-
"notes": "
|
|
|
|
|
|
|
|
|
|
| 239 |
},
|
| 240 |
{
|
| 241 |
"parameters" :{
|
|
@@ -243,7 +261,8 @@ LORA_DETAILS = {
|
|
| 243 |
}
|
| 244 |
},
|
| 245 |
{
|
| 246 |
-
"thumbnail": ""
|
|
|
|
| 247 |
}
|
| 248 |
],
|
| 249 |
"XLabs-AI/flux-lora-collection/anime_lora.safetensors":[
|
|
@@ -254,6 +273,9 @@ LORA_DETAILS = {
|
|
| 254 |
{
|
| 255 |
"trigger_words": "anime,",
|
| 256 |
},
|
|
|
|
|
|
|
|
|
|
| 257 |
{
|
| 258 |
"notes": "You should use ',anime' as trigger words at the end. "
|
| 259 |
},
|
|
@@ -263,7 +285,8 @@ LORA_DETAILS = {
|
|
| 263 |
}
|
| 264 |
},
|
| 265 |
{
|
| 266 |
-
"thumbnail": ""
|
|
|
|
| 267 |
}
|
| 268 |
],
|
| 269 |
"XLabs-AI/flux-lora-collection/scenery_lora.safetensors":[
|
|
@@ -274,6 +297,9 @@ LORA_DETAILS = {
|
|
| 274 |
{
|
| 275 |
"trigger_words": "scenery style,",
|
| 276 |
},
|
|
|
|
|
|
|
|
|
|
| 277 |
{
|
| 278 |
"notes": "You should use ',scenery style' as trigger words at the end. "
|
| 279 |
},
|
|
@@ -283,7 +309,8 @@ LORA_DETAILS = {
|
|
| 283 |
}
|
| 284 |
},
|
| 285 |
{
|
| 286 |
-
"thumbnail": ""
|
|
|
|
| 287 |
}
|
| 288 |
],
|
| 289 |
"XLabs-AI/flux-lora-collection/disney_lora.safetensors":[
|
|
@@ -294,6 +321,9 @@ LORA_DETAILS = {
|
|
| 294 |
{
|
| 295 |
"trigger_words": "disney style,",
|
| 296 |
},
|
|
|
|
|
|
|
|
|
|
| 297 |
{
|
| 298 |
"notes": "You should use ',disney style' as trigger words at the end. "
|
| 299 |
},
|
|
@@ -303,13 +333,17 @@ LORA_DETAILS = {
|
|
| 303 |
}
|
| 304 |
},
|
| 305 |
{
|
| 306 |
-
"thumbnail": ""
|
|
|
|
| 307 |
}
|
| 308 |
],
|
| 309 |
"XLabs-AI/flux-RealismLora":[
|
| 310 |
{
|
| 311 |
"notes": "No trigger words but 8k, Animatrix illustration style, fantasy style, natural photo cinematic should all work "
|
| 312 |
},
|
|
|
|
|
|
|
|
|
|
| 313 |
{
|
| 314 |
"parameters" :{
|
| 315 |
"guidance_scale": "3.2",
|
|
@@ -318,7 +352,8 @@ LORA_DETAILS = {
|
|
| 318 |
}
|
| 319 |
},
|
| 320 |
{
|
| 321 |
-
"thumbnail": ""
|
|
|
|
| 322 |
}
|
| 323 |
],
|
| 324 |
"Cossale/Frames2-Flex.1": [
|
|
@@ -329,6 +364,9 @@ LORA_DETAILS = {
|
|
| 329 |
{
|
| 330 |
"trigger_words": "FRM$",
|
| 331 |
},
|
|
|
|
|
|
|
|
|
|
| 332 |
{
|
| 333 |
"notes": " FRM$ used as trigger words. "
|
| 334 |
},
|
|
@@ -338,7 +376,8 @@ LORA_DETAILS = {
|
|
| 338 |
}
|
| 339 |
},
|
| 340 |
{
|
| 341 |
-
"thumbnail": ""
|
|
|
|
| 342 |
}
|
| 343 |
],
|
| 344 |
"Yuanshi/OminiControl": [
|
|
@@ -350,6 +389,9 @@ LORA_DETAILS = {
|
|
| 350 |
"weight_name": "omini/subject_1024_beta.safetensors",
|
| 351 |
"adapter_name": "subject_1024"
|
| 352 |
},
|
|
|
|
|
|
|
|
|
|
| 353 |
{
|
| 354 |
"parameters" :{
|
| 355 |
"num_inference_steps": "8",
|
|
@@ -360,7 +402,8 @@ LORA_DETAILS = {
|
|
| 360 |
"notes": "Select an Image as a guide."
|
| 361 |
},
|
| 362 |
{
|
| 363 |
-
"thumbnail": ""
|
|
|
|
| 364 |
}
|
| 365 |
],
|
| 366 |
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design": [
|
|
@@ -370,6 +413,9 @@ LORA_DETAILS = {
|
|
| 370 |
{
|
| 371 |
"trigger_words": "wablogo, logo, Minimalist ",
|
| 372 |
},
|
|
|
|
|
|
|
|
|
|
| 373 |
{
|
| 374 |
"pipe" :{
|
| 375 |
"fuse_lora": {"lora_scale":0.8}
|
|
@@ -381,7 +427,38 @@ LORA_DETAILS = {
|
|
| 381 |
}
|
| 382 |
},
|
| 383 |
{
|
| 384 |
-
"thumbnail": ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
}
|
| 386 |
],
|
| 387 |
"Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1": [
|
|
@@ -391,6 +468,9 @@ LORA_DETAILS = {
|
|
| 391 |
{
|
| 392 |
"trigger_words": "fractalLand ",
|
| 393 |
},
|
|
|
|
|
|
|
|
|
|
| 394 |
{
|
| 395 |
"parameters" :{
|
| 396 |
"max_sequence_length": "512",
|
|
@@ -399,10 +479,134 @@ LORA_DETAILS = {
|
|
| 399 |
}
|
| 400 |
},
|
| 401 |
{
|
| 402 |
-
"thumbnail": ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
}
|
| 404 |
]
|
| 405 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
# Read the contents of the LUT folder, output to a list
|
| 407 |
lut_folder = "./LUT"
|
| 408 |
lut_files = [os.path.join(lut_folder, f).replace("\\", "/") for f in os.listdir(lut_folder) if f.endswith(".cube")]
|
|
|
|
| 62 |
default_lut_example_img = "./LUT/daisy.jpg"
|
| 63 |
MAX_SEED = np.iinfo(np.int32).max
|
| 64 |
TARGET_SIZE = (2688,1536)
|
| 65 |
+
BASE_HEIGHT = 576
|
| 66 |
+
SCALE_FACTOR = (8/3)
|
| 67 |
TMPDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 68 |
os.makedirs(TMPDIR, exist_ok=True)
|
| 69 |
|
|
|
|
| 187 |
|
| 188 |
pre_rendered_maps_paths = [
|
| 189 |
map_file['file'].replace("\\", "/")
|
| 190 |
+
for map_name, map_file in sorted(
|
| 191 |
PRE_RENDERED_MAPS_JSON_LEVELS.items(),
|
| 192 |
key=lambda x: (
|
| 193 |
x[1]['quality'],
|
|
|
|
| 201 |
MODELS = [
|
| 202 |
"black-forest-labs/FLUX.1-schnell",
|
| 203 |
"black-forest-labs/FLUX.1-dev",
|
| 204 |
+
"ostris/Flex.1-alpha",
|
| 205 |
+
"black-forest-labs/FLUX.1-Fill-dev"
|
| 206 |
]
|
| 207 |
# Available LoRA weights
|
| 208 |
LORA_WEIGHTS = [
|
| 209 |
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design",
|
| 210 |
+
"Shakker-Labs/FLUX.1-dev-LoRA-Micro-landscape-on-Mobile-Phone",
|
| 211 |
"Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1",
|
| 212 |
"Cossale/Frames2-Flex.1",
|
| 213 |
+
"AlekseyCalvin/HSTcolorFlexAlpha",
|
| 214 |
"XLabs-AI/flux-lora-collection/anime_lora.safetensors",
|
| 215 |
"XLabs-AI/flux-lora-collection/scenery_lora.safetensors",
|
| 216 |
"XLabs-AI/flux-lora-collection/disney_lora.safetensors",
|
| 217 |
+
"XLabs-AI/flux-RealismLora",
|
| 218 |
+
"strangerzonehf/Flux-Cute-3D-Kawaii-LoRA",
|
| 219 |
+
"SebastianBodza/flux_cute3D",
|
| 220 |
+
"gokaygokay/Flux-Seamless-Texture-LoRA",
|
| 221 |
+
"gokaygokay/Flux-Game-Assets-LoRA-v2",
|
| 222 |
]
|
| 223 |
|
| 224 |
# Map each LoRA weight to its corresponding model
|
| 225 |
LORA_TO_MODEL = {
|
| 226 |
"Yuanshi/OminiControl": "black-forest-labs/FLUX.1-schnell",
|
| 227 |
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design": "black-forest-labs/FLUX.1-dev",
|
| 228 |
+
"Shakker-Labs/FLUX.1-dev-LoRA-Micro-landscape-on-Mobile-Phone": "black-forest-labs/FLUX.1-dev",
|
| 229 |
"Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1": "black-forest-labs/FLUX.1-dev",
|
| 230 |
"Cossale/Frames2-Flex.1": "ostris/Flex.1-alpha",
|
| 231 |
"AlekseyCalvin/HSTcolorFlexAlpha": "ostris/Flex.1-alpha",
|
| 232 |
"XLabs-AI/flux-lora-collection/anime_lora.safetensors":"black-forest-labs/FLUX.1-dev",
|
| 233 |
"XLabs-AI/flux-lora-collection/scenery_lora.safetensors":"black-forest-labs/FLUX.1-dev",
|
| 234 |
"XLabs-AI/flux-lora-collection/disney_lora.safetensors":"black-forest-labs/FLUX.1-dev",
|
| 235 |
+
"XLabs-AI/flux-RealismLora":"black-forest-labs/FLUX.1-dev",
|
| 236 |
+
"strangerzonehf/Flux-Cute-3D-Kawaii-LoRA":"black-forest-labs/FLUX.1-dev",
|
| 237 |
+
"SebastianBodza/flux_cute3D":"black-forest-labs/FLUX.1-dev",
|
| 238 |
+
"gokaygokay/Flux-Seamless-Texture-LoRA":"black-forest-labs/FLUX.1-dev",
|
| 239 |
+
"gokaygokay/Flux-Game-Assets-LoRA-v2":"black-forest-labs/FLUX.1-dev",
|
| 240 |
}
|
| 241 |
condition_type = ["depth", "canny", "subject", "coloring", "deblurring", "fill", "redux"]
|
| 242 |
+
|
| 243 |
# Detailed LoRA weight configurations
|
| 244 |
LORA_DETAILS = {
|
| 245 |
"AlekseyCalvin/HSTcolorFlexAlpha" : [
|
| 246 |
{
|
| 247 |
+
"trigger_words": "(6kStepsCkpt)HST style analog autochrome photo ",
|
| 248 |
},
|
| 249 |
{
|
| 250 |
"weight_name": "HSToricColorFlex_6000steps_LoRAforFluxOrFlex_32dim64alpha.safetensors",
|
| 251 |
},
|
| 252 |
{
|
| 253 |
+
"notes": "We use (6kStepsCkpt)HST style analog autochrome photo as trigger words."
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"title": "HSToric Color Flex",
|
| 257 |
},
|
| 258 |
{
|
| 259 |
"parameters" :{
|
|
|
|
| 261 |
}
|
| 262 |
},
|
| 263 |
{
|
| 264 |
+
"thumbnail": "https://huggingface.co/AlekseyCalvin/HSTcolorFlexAlpha/resolve/main/images/example_gypubjtqx.png",
|
| 265 |
+
"show_in_gallery": True
|
| 266 |
}
|
| 267 |
],
|
| 268 |
"XLabs-AI/flux-lora-collection/anime_lora.safetensors":[
|
|
|
|
| 273 |
{
|
| 274 |
"trigger_words": "anime,",
|
| 275 |
},
|
| 276 |
+
{
|
| 277 |
+
"title": "Anime",
|
| 278 |
+
},
|
| 279 |
{
|
| 280 |
"notes": "You should use ',anime' as trigger words at the end. "
|
| 281 |
},
|
|
|
|
| 285 |
}
|
| 286 |
},
|
| 287 |
{
|
| 288 |
+
"thumbnail": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_14.png?raw=true",
|
| 289 |
+
"show_in_gallery": True
|
| 290 |
}
|
| 291 |
],
|
| 292 |
"XLabs-AI/flux-lora-collection/scenery_lora.safetensors":[
|
|
|
|
| 297 |
{
|
| 298 |
"trigger_words": "scenery style,",
|
| 299 |
},
|
| 300 |
+
{
|
| 301 |
+
"title": "Scenery",
|
| 302 |
+
},
|
| 303 |
{
|
| 304 |
"notes": "You should use ',scenery style' as trigger words at the end. "
|
| 305 |
},
|
|
|
|
| 309 |
}
|
| 310 |
},
|
| 311 |
{
|
| 312 |
+
"thumbnail": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_21.png?raw=true",
|
| 313 |
+
"show_in_gallery": True
|
| 314 |
}
|
| 315 |
],
|
| 316 |
"XLabs-AI/flux-lora-collection/disney_lora.safetensors":[
|
|
|
|
| 321 |
{
|
| 322 |
"trigger_words": "disney style,",
|
| 323 |
},
|
| 324 |
+
{
|
| 325 |
+
"title": "Disney Style",
|
| 326 |
+
},
|
| 327 |
{
|
| 328 |
"notes": "You should use ',disney style' as trigger words at the end. "
|
| 329 |
},
|
|
|
|
| 333 |
}
|
| 334 |
},
|
| 335 |
{
|
| 336 |
+
"thumbnail": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_19.png?raw=true",
|
| 337 |
+
"show_in_gallery": True
|
| 338 |
}
|
| 339 |
],
|
| 340 |
"XLabs-AI/flux-RealismLora":[
|
| 341 |
{
|
| 342 |
"notes": "No trigger words but 8k, Animatrix illustration style, fantasy style, natural photo cinematic should all work "
|
| 343 |
},
|
| 344 |
+
{
|
| 345 |
+
"title": "Realism",
|
| 346 |
+
},
|
| 347 |
{
|
| 348 |
"parameters" :{
|
| 349 |
"guidance_scale": "3.2",
|
|
|
|
| 352 |
}
|
| 353 |
},
|
| 354 |
{
|
| 355 |
+
"thumbnail": "https://huggingface.co/VideoAditor/Flux-Lora-Realism/resolve/main/images/feel-the-difference-between-using-flux-with-lora-from-xlab-v0-j0ehybmvxehd1.png",
|
| 356 |
+
"show_in_gallery": True
|
| 357 |
}
|
| 358 |
],
|
| 359 |
"Cossale/Frames2-Flex.1": [
|
|
|
|
| 364 |
{
|
| 365 |
"trigger_words": "FRM$",
|
| 366 |
},
|
| 367 |
+
{
|
| 368 |
+
"title": "Frames2-Flex.1",
|
| 369 |
+
},
|
| 370 |
{
|
| 371 |
"notes": " FRM$ used as trigger words. "
|
| 372 |
},
|
|
|
|
| 376 |
}
|
| 377 |
},
|
| 378 |
{
|
| 379 |
+
"thumbnail": "https://huggingface.co/Cossale/Frames2-Flex.1/resolve/main/samples/1737567472380__000005000_2.jpg",
|
| 380 |
+
"show_in_gallery": True
|
| 381 |
}
|
| 382 |
],
|
| 383 |
"Yuanshi/OminiControl": [
|
|
|
|
| 389 |
"weight_name": "omini/subject_1024_beta.safetensors",
|
| 390 |
"adapter_name": "subject_1024"
|
| 391 |
},
|
| 392 |
+
{
|
| 393 |
+
"trigger_words": "omini,",
|
| 394 |
+
},
|
| 395 |
{
|
| 396 |
"parameters" :{
|
| 397 |
"num_inference_steps": "8",
|
|
|
|
| 402 |
"notes": "Select an Image as a guide."
|
| 403 |
},
|
| 404 |
{
|
| 405 |
+
"thumbnail": "",
|
| 406 |
+
"show_in_gallery": False
|
| 407 |
}
|
| 408 |
],
|
| 409 |
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design": [
|
|
|
|
| 413 |
{
|
| 414 |
"trigger_words": "wablogo, logo, Minimalist ",
|
| 415 |
},
|
| 416 |
+
{
|
| 417 |
+
"title": "Logo Design",
|
| 418 |
+
},
|
| 419 |
{
|
| 420 |
"pipe" :{
|
| 421 |
"fuse_lora": {"lora_scale":0.8}
|
|
|
|
| 427 |
}
|
| 428 |
},
|
| 429 |
{
|
| 430 |
+
"thumbnail": "https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design/resolve/main/images/73e7db6a33550d05836ce285549de60075d05373c7b0660d631dac33.jpg",
|
| 431 |
+
"show_in_gallery": True
|
| 432 |
+
}
|
| 433 |
+
],
|
| 434 |
+
"Shakker-Labs/FLUX.1-dev-LoRA-Micro-landscape-on-Mobile-Phone": [
|
| 435 |
+
{
|
| 436 |
+
"notes": "Uses miniature stereoscopic scene as trigger words.."
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"trigger_words": "miniature stereoscopic scene ",
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"title": "Micro Landscape",
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"weight_name": "FLUX-dev-lora-micro-landscape.safetensors",
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"pipe" :{
|
| 449 |
+
"fuse_lora": {"lora_scale":0.7}
|
| 450 |
+
}
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"parameters" :{
|
| 454 |
+
"guidance_scale": "3.5",
|
| 455 |
+
"num_inference_steps": "24",
|
| 456 |
+
"scale": "0.72",
|
| 457 |
+
}
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"thumbnail": "https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Micro-landscape-on-Mobile-Phone/resolve/main/images/c4f5c765bc8d3d396ed13d65666895ab23ada35c78ca6d91bf814613.jpg",
|
| 461 |
+
"show_in_gallery": True
|
| 462 |
}
|
| 463 |
],
|
| 464 |
"Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1": [
|
|
|
|
| 468 |
{
|
| 469 |
"trigger_words": "fractalLand ",
|
| 470 |
},
|
| 471 |
+
{
|
| 472 |
+
"title": "fractalLand",
|
| 473 |
+
},
|
| 474 |
{
|
| 475 |
"parameters" :{
|
| 476 |
"max_sequence_length": "512",
|
|
|
|
| 479 |
}
|
| 480 |
},
|
| 481 |
{
|
| 482 |
+
"thumbnail": "https://huggingface.co/Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1/resolve/main/images/example_e2zoqwftv.png",
|
| 483 |
+
"show_in_gallery": True
|
| 484 |
+
}
|
| 485 |
+
],
|
| 486 |
+
"strangerzonehf/Flux-Cute-3D-Kawaii-LoRA": [
|
| 487 |
+
{
|
| 488 |
+
"weight_name": "Cute-3d-Kawaii.safetensors",
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"notes": "Uses Cute 3d Kawaii at the start of the prompts "
|
| 492 |
+
},
|
| 493 |
+
{
|
| 494 |
+
"trigger_words": "Cute 3d Kawaii ",
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"title": "Cute 3D Kawaii",
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"parameters" :{
|
| 501 |
+
"height": "1024"
|
| 502 |
+
}
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"thumbnail": "https://huggingface.co/strangerzonehf/Flux-Cute-3D-Kawaii-LoRA/resolve/main/images/CK3.png",
|
| 506 |
+
"show_in_gallery": True
|
| 507 |
+
}
|
| 508 |
+
],
|
| 509 |
+
"SebastianBodza/flux_cute3D": [
|
| 510 |
+
{
|
| 511 |
+
"notes": "Uses NEOCUTE3D at the start of the prompts "
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"trigger_words": "NEOCUTE3D ",
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"title": "Cute 3D",
|
| 518 |
+
},
|
| 519 |
+
{
|
| 520 |
+
"thumbnail": "https://huggingface.co/SebastianBodza/flux_cute3D/resolve/main/images/astronaut.webp",
|
| 521 |
+
"show_in_gallery": True
|
| 522 |
+
}
|
| 523 |
+
],
|
| 524 |
+
"gokaygokay/Flux-Seamless-Texture-LoRA": [
|
| 525 |
+
{
|
| 526 |
+
"notes": "Uses smlstxtr at the start of the prompts "
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"weight_name": "seamless_texture.safetensors",
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"trigger_words": "smlstxtr ",
|
| 533 |
+
},
|
| 534 |
+
{
|
| 535 |
+
"title": "Seamless Texture",
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"thumbnail": "https://huggingface.co/gokaygokay/Flux-Seamless-Texture-LoRA/resolve/main/images/image3.jpg",
|
| 539 |
+
"show_in_gallery": True
|
| 540 |
+
}
|
| 541 |
+
],
|
| 542 |
+
"gokaygokay/Flux-Game-Assets-LoRA-v2": [
|
| 543 |
+
{
|
| 544 |
+
"notes": "Uses wbgmsst, white background at the start of the prompts "
|
| 545 |
+
},
|
| 546 |
+
{
|
| 547 |
+
"trigger_words": "wbgmsst, white background ",
|
| 548 |
+
},
|
| 549 |
+
{
|
| 550 |
+
"title": "Game Assets",
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"thumbnail": "https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2/resolve/main/images/example_y2bqpuphc.png",
|
| 554 |
+
"show_in_gallery": True
|
| 555 |
}
|
| 556 |
]
|
| 557 |
}
|
| 558 |
+
|
| 559 |
+
def sort_loras(sortby):
|
| 560 |
+
loras = []
|
| 561 |
+
for key, details in LORA_DETAILS.items():
|
| 562 |
+
lora_info = {
|
| 563 |
+
"image": "",
|
| 564 |
+
"title": "",
|
| 565 |
+
"repo": key,
|
| 566 |
+
"weights": "",
|
| 567 |
+
"trigger_word": "",
|
| 568 |
+
"notes": ""
|
| 569 |
+
}
|
| 570 |
+
for item in details:
|
| 571 |
+
if "thumbnail" in item:
|
| 572 |
+
lora_info["image"] = item.get("thumbnail", "")
|
| 573 |
+
if "weight_name" in item:
|
| 574 |
+
lora_info["weights"] = item.get("weight_name", "")
|
| 575 |
+
if "trigger_words" in item:
|
| 576 |
+
lora_info["trigger_word"] = item.get("trigger_words", "")
|
| 577 |
+
if "notes" in item:
|
| 578 |
+
lora_info["notes"] = item.get("notes", "")
|
| 579 |
+
if "title" in item:
|
| 580 |
+
lora_info["title"] = item.get("title", "")
|
| 581 |
+
# Default title to key if not provided
|
| 582 |
+
if not lora_info["title"]:
|
| 583 |
+
lora_info["title"] = key
|
| 584 |
+
# Only add to gallery if there is an image set or any item is flagged "show_in_gallery"
|
| 585 |
+
if lora_info["image"] or any(item.get("show_in_gallery", False) for item in details):
|
| 586 |
+
loras.append(lora_info)
|
| 587 |
+
# Add models from the MODELS list with a default thumbnail
|
| 588 |
+
for model in MODELS:
|
| 589 |
+
loras.append({
|
| 590 |
+
"image": f"images/prerendered/th/"+ model.split("/")[-1]+".png",
|
| 591 |
+
"title": model.split("/")[-1],
|
| 592 |
+
"repo": model,
|
| 593 |
+
"weights": "",
|
| 594 |
+
"trigger_word": "",
|
| 595 |
+
"notes": ""
|
| 596 |
+
})
|
| 597 |
+
# Sort the loras list by the title attribute
|
| 598 |
+
loras = sorted(loras, key=lambda x: x[sortby])
|
| 599 |
+
loras.append({
|
| 600 |
+
"image": f"images/images/Bee-test-2.png",
|
| 601 |
+
"title": "Manual Entry",
|
| 602 |
+
"repo": "Manual Entry",
|
| 603 |
+
"weights": "",
|
| 604 |
+
"trigger_word": "",
|
| 605 |
+
"notes": ""
|
| 606 |
+
})
|
| 607 |
+
return loras
|
| 608 |
+
|
| 609 |
+
LORAS = sort_loras("title")
|
| 610 |
# Read the contents of the LUT folder, output to a list
|
| 611 |
lut_folder = "./LUT"
|
| 612 |
lut_files = [os.path.join(lut_folder, f).replace("\\", "/") for f in os.listdir(lut_folder) if f.endswith(".cube")]
|
utils/hex_grid.py
CHANGED
|
@@ -15,6 +15,7 @@ from utils.color_utils import update_color_opacity, parse_hex_color, draw_text_w
|
|
| 15 |
import random # For random text options
|
| 16 |
import utils.constants as constants # Import constants
|
| 17 |
import ast
|
|
|
|
| 18 |
|
| 19 |
def calculate_font_size(hex_size, padding=0.6, size_ceil=20, min_font_size=8):
|
| 20 |
"""
|
|
@@ -277,6 +278,10 @@ def generate_hexagon_grid_with_text(hex_size, border_size, input_image=None, ima
|
|
| 277 |
text = f"{col},{row}"
|
| 278 |
elif add_hex_text_option == "Sequential Numbers":
|
| 279 |
text = f"{hex_index}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
elif text_list:
|
| 281 |
text = text_list[hex_index % len(text_list)]
|
| 282 |
else:
|
|
|
|
| 15 |
import random # For random text options
|
| 16 |
import utils.constants as constants # Import constants
|
| 17 |
import ast
|
| 18 |
+
from utils.misc import number_to_letter
|
| 19 |
|
| 20 |
def calculate_font_size(hex_size, padding=0.6, size_ceil=20, min_font_size=8):
|
| 21 |
"""
|
|
|
|
| 278 |
text = f"{col},{row}"
|
| 279 |
elif add_hex_text_option == "Sequential Numbers":
|
| 280 |
text = f"{hex_index}"
|
| 281 |
+
elif add_hex_text_option == "Column Letter, Row Number":
|
| 282 |
+
text = f"{number_to_letter(col)},{row}"
|
| 283 |
+
elif add_hex_text_option == "Column Number, Row Letter":
|
| 284 |
+
text = f"{col},{number_to_letter(row)}"
|
| 285 |
elif text_list:
|
| 286 |
text = text_list[hex_index % len(text_list)]
|
| 287 |
else:
|
utils/image_utils.py
CHANGED
|
@@ -102,33 +102,34 @@ def build_prerendered_images(images_list):
|
|
| 102 |
# print(filtered_maps)
|
| 103 |
def build_prerendered_images_by_quality(quality_limit, key='file'):
|
| 104 |
"""
|
| 105 |
-
Retrieve and sort file paths from PRE_RENDERED_MAPS_JSON_LEVELS where quality is
|
| 106 |
-
|
| 107 |
-
|
| 108 |
Args:
|
| 109 |
-
quality_limit (int):
|
| 110 |
-
key (str):
|
| 111 |
-
|
| 112 |
Returns:
|
| 113 |
-
|
| 114 |
-
"""
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
images_list = [
|
| 126 |
-
map_info[key].replace("\\", "/")
|
| 127 |
-
for _, map_info in sorted_maps
|
| 128 |
-
if map_info['quality'] <= quality_limit
|
| 129 |
]
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
|
| 134 |
def build_encoded_images(images_list):
|
|
@@ -615,7 +616,8 @@ def apply_lut_to_image_path(lut_filename: str, image_path: str) -> tuple[Image,
|
|
| 615 |
img, new_image_path = convert_to_rgba_png(image_path)
|
| 616 |
else:
|
| 617 |
img, new_image_path = convert_to_rgba_png(image_path)
|
| 618 |
-
|
|
|
|
| 619 |
else:
|
| 620 |
new_image_path = image_path
|
| 621 |
if lut_filename is not None:
|
|
@@ -623,7 +625,7 @@ def apply_lut_to_image_path(lut_filename: str, image_path: str) -> tuple[Image,
|
|
| 623 |
img = apply_lut(img, lut_filename)
|
| 624 |
except Exception as e:
|
| 625 |
print(f"BAD LUT: Error applying LUT {str(e)}.")
|
| 626 |
-
img.save(new_image_path, format='PNG')
|
| 627 |
return img, str(new_image_path)
|
| 628 |
|
| 629 |
############################################# RGBA ###########################################################
|
|
@@ -838,3 +840,40 @@ def print_json():
|
|
| 838 |
for key, value in PRE_RENDERED_MAPS_JSON_LEVELS.items():
|
| 839 |
print(f" '{key}': {{'file': '{value['file']}', 'thumbnail': '{value['thumbnail']}', 'quality': {value['quality']}}},")
|
| 840 |
print("}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
# print(filtered_maps)
|
| 103 |
def build_prerendered_images_by_quality(quality_limit, key='file'):
|
| 104 |
"""
|
| 105 |
+
Retrieve and sort file paths from PRE_RENDERED_MAPS_JSON_LEVELS where quality is <= quality_limit.
|
| 106 |
+
Sorts by quality and case-insensitive alphanumeric key.
|
| 107 |
+
|
| 108 |
Args:
|
| 109 |
+
quality_limit (int): Maximum quality threshold
|
| 110 |
+
key (str): Key to extract file path from map info (default: 'file')
|
| 111 |
+
|
| 112 |
Returns:
|
| 113 |
+
tuple: (sorted file paths list, list of corresponding map names)
|
| 114 |
+
"""
|
| 115 |
+
# Pre-compute lowercase alphanumeric key once per item
|
| 116 |
+
def get_sort_key(item):
|
| 117 |
+
name, info = item
|
| 118 |
+
return (info['quality'], ''.join(c for c in name.lower() if c.isalnum()))
|
| 119 |
+
|
| 120 |
+
# Single pass: sort and filter
|
| 121 |
+
filtered_maps = [
|
| 122 |
+
(info[key].replace("\\", "/"), name)
|
| 123 |
+
for name, info in sorted(PRE_RENDERED_MAPS_JSON_LEVELS.items(), key=get_sort_key)
|
| 124 |
+
if info['quality'] <= quality_limit
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
]
|
| 126 |
|
| 127 |
+
# Split into separate lists efficiently
|
| 128 |
+
if filtered_maps:
|
| 129 |
+
#file_paths, map_names = zip(*filtered_maps)
|
| 130 |
+
#return (build_prerendered_images(file_paths), list(map_names))
|
| 131 |
+
return [(open_image(file_path), map_name) for file_path, map_name in filtered_maps]
|
| 132 |
+
return (None,"")
|
| 133 |
|
| 134 |
|
| 135 |
def build_encoded_images(images_list):
|
|
|
|
| 616 |
img, new_image_path = convert_to_rgba_png(image_path)
|
| 617 |
else:
|
| 618 |
img, new_image_path = convert_to_rgba_png(image_path)
|
| 619 |
+
if image_path != new_image_path:
|
| 620 |
+
delete_image(image_path)
|
| 621 |
else:
|
| 622 |
new_image_path = image_path
|
| 623 |
if lut_filename is not None:
|
|
|
|
| 625 |
img = apply_lut(img, lut_filename)
|
| 626 |
except Exception as e:
|
| 627 |
print(f"BAD LUT: Error applying LUT {str(e)}.")
|
| 628 |
+
img.save(new_image_path.lower(), format='PNG')
|
| 629 |
return img, str(new_image_path)
|
| 630 |
|
| 631 |
############################################# RGBA ###########################################################
|
|
|
|
| 840 |
for key, value in PRE_RENDERED_MAPS_JSON_LEVELS.items():
|
| 841 |
print(f" '{key}': {{'file': '{value['file']}', 'thumbnail': '{value['thumbnail']}', 'quality': {value['quality']}}},")
|
| 842 |
print("}")
|
| 843 |
+
|
| 844 |
+
def calculate_optimal_fill_dimensions(image: Image.Image):
|
| 845 |
+
# Extract the original dimensions
|
| 846 |
+
original_width, original_height = image.size
|
| 847 |
+
|
| 848 |
+
# Set constants
|
| 849 |
+
MIN_ASPECT_RATIO = 9 / 16
|
| 850 |
+
MAX_ASPECT_RATIO = 16 / 9
|
| 851 |
+
FIXED_DIMENSION = 1024
|
| 852 |
+
|
| 853 |
+
# Calculate the aspect ratio of the original image
|
| 854 |
+
original_aspect_ratio = original_width / original_height
|
| 855 |
+
|
| 856 |
+
# Determine which dimension to fix
|
| 857 |
+
if original_aspect_ratio > 1: # Wider than tall
|
| 858 |
+
width = FIXED_DIMENSION
|
| 859 |
+
height = round(FIXED_DIMENSION / original_aspect_ratio)
|
| 860 |
+
else: # Taller than wide
|
| 861 |
+
height = FIXED_DIMENSION
|
| 862 |
+
width = round(FIXED_DIMENSION * original_aspect_ratio)
|
| 863 |
+
|
| 864 |
+
# Ensure dimensions are multiples of 8
|
| 865 |
+
width = (width // 8) * 8
|
| 866 |
+
height = (height // 8) * 8
|
| 867 |
+
|
| 868 |
+
# Enforce aspect ratio limits
|
| 869 |
+
calculated_aspect_ratio = width / height
|
| 870 |
+
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
| 871 |
+
width = (height * MAX_ASPECT_RATIO // 8) * 8
|
| 872 |
+
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
| 873 |
+
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
| 874 |
+
|
| 875 |
+
# Ensure width and height remain above the minimum dimensions
|
| 876 |
+
width = max(width, 576) if width == FIXED_DIMENSION else width
|
| 877 |
+
height = max(height, 576) if height == FIXED_DIMENSION else height
|
| 878 |
+
|
| 879 |
+
return width, height
|
utils/lora_details.py
CHANGED
|
@@ -1,16 +1,14 @@
|
|
| 1 |
# utils/lora_details.py
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
-
from utils.constants import LORA_DETAILS
|
| 5 |
-
def upd_prompt_notes_by_index(lora_index):
|
| 6 |
-
"""
|
| 7 |
-
Updates the prompt_notes_label with the notes from LORAS based on index.
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
"""
|
| 15 |
try:
|
| 16 |
if LORAS[lora_index]:
|
|
@@ -20,7 +18,10 @@ def upd_prompt_notes_by_index(lora_index):
|
|
| 20 |
trigger_position = LORAS[lora_index].get('trigger_position', "")
|
| 21 |
notes = f"{trigger_position} '{trigger_word}' in prompt"
|
| 22 |
except IndexError:
|
| 23 |
-
notes =
|
|
|
|
|
|
|
|
|
|
| 24 |
return gr.update(value=notes)
|
| 25 |
|
| 26 |
def get_trigger_words_by_index(lora_index):
|
|
@@ -138,3 +139,23 @@ def split_prompt_precisely(prompt, max_tokens=77, model="gpt-3.5-turbo"):
|
|
| 138 |
remaining_prompt = encoding.decode(remaining_tokens)
|
| 139 |
|
| 140 |
return split_prompt, remaining_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# utils/lora_details.py
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
+
from utils.constants import LORA_DETAILS, MODELS, LORAS
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
def get_lora_models():
|
| 7 |
+
return [(item["image"], item["title"]) for item in LORAS]
|
| 8 |
|
| 9 |
+
def upd_prompt_notes_by_index(lora_index):
|
| 10 |
+
"""
|
| 11 |
+
Updates the prompt notes label based on the selected LoRA model.
|
| 12 |
"""
|
| 13 |
try:
|
| 14 |
if LORAS[lora_index]:
|
|
|
|
| 18 |
trigger_position = LORAS[lora_index].get('trigger_position', "")
|
| 19 |
notes = f"{trigger_position} '{trigger_word}' in prompt"
|
| 20 |
except IndexError:
|
| 21 |
+
notes = (
|
| 22 |
+
"Enter prompt description of your image. \n"
|
| 23 |
+
"Using models without LoRA may take 30 minutes."
|
| 24 |
+
)
|
| 25 |
return gr.update(value=notes)
|
| 26 |
|
| 27 |
def get_trigger_words_by_index(lora_index):
|
|
|
|
| 139 |
remaining_prompt = encoding.decode(remaining_tokens)
|
| 140 |
|
| 141 |
return split_prompt, remaining_prompt
|
| 142 |
+
|
| 143 |
+
def is_lora_loaded(pipe, adapter_name):
|
| 144 |
+
"""
|
| 145 |
+
Check if a LoRA weight with the given adapter name is already loaded in the pipeline.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
pipe (FluxPipeline): The pipeline to check.
|
| 149 |
+
adapter_name (str): The adapter name of the LoRA weight.
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
bool: True if the LoRA weight is loaded, False otherwise.
|
| 153 |
+
"""
|
| 154 |
+
adapter_list = pipe.get_list_adapters()
|
| 155 |
+
for component_adapters in adapter_list.values():
|
| 156 |
+
if adapter_name in component_adapters:
|
| 157 |
+
return True
|
| 158 |
+
|
| 159 |
+
if adapter_name in getattr(pipe, "peft_config", {}):
|
| 160 |
+
return True
|
| 161 |
+
return False
|
utils/misc.py
CHANGED
|
@@ -108,6 +108,13 @@ def convert_ratio_to_dimensions(ratio, height=512, rotate90=False):
|
|
| 108 |
adjusted_width, adjusted_height = adjusted_height, adjusted_width
|
| 109 |
return adjusted_width, adjusted_height
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
def install_torch():
|
| 112 |
print("\nInstalling PyTorch with CUDA support...")
|
| 113 |
# Define the package and index URL
|
|
@@ -189,4 +196,14 @@ def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
| 189 |
"""
|
| 190 |
Get the random seed.
|
| 191 |
"""
|
| 192 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
adjusted_width, adjusted_height = adjusted_height, adjusted_width
|
| 109 |
return adjusted_width, adjusted_height
|
| 110 |
|
| 111 |
+
def update_dimensions_on_ratio(aspect_ratio_str, base_height):
|
| 112 |
+
# Convert aspect_ratio from a string in format "W:H" into numbers and compute new dimensions.
|
| 113 |
+
width_ratio, height_ratio = map(int, aspect_ratio_str.split(":"))
|
| 114 |
+
aspect_ratio = width_ratio / height_ratio
|
| 115 |
+
new_width, new_height = convert_ratio_to_dimensions(aspect_ratio, base_height)
|
| 116 |
+
return new_width, new_height
|
| 117 |
+
|
| 118 |
def install_torch():
|
| 119 |
print("\nInstalling PyTorch with CUDA support...")
|
| 120 |
# Define the package and index URL
|
|
|
|
| 196 |
"""
|
| 197 |
Get the random seed.
|
| 198 |
"""
|
| 199 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 200 |
+
|
| 201 |
+
def number_to_letter(n: int, upper_case: bool = True):
|
| 202 |
+
result = ''
|
| 203 |
+
a_char = 97
|
| 204 |
+
if upper_case:
|
| 205 |
+
a_char -= 32
|
| 206 |
+
while abs(n) > 0:
|
| 207 |
+
n, remainder = divmod(abs(n) - 1, 26)
|
| 208 |
+
result = chr(a_char + remainder) + result
|
| 209 |
+
return result
|