Spaces:
Sleeping
Sleeping
Drastic Update to Image Generation to accomodate @spaces.GPU() excessive time usage
Browse files- app.py +218 -293
- utils/constants.py +1 -0
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from typing import Optional, Union, List, Tuple
|
|
| 8 |
|
| 9 |
from PIL import Image, ImageFilter
|
| 10 |
import cv2
|
|
|
|
| 11 |
import utils.constants as constants
|
| 12 |
|
| 13 |
from haishoku.haishoku import Haishoku
|
|
@@ -91,6 +92,7 @@ from utils.version_info import (
|
|
| 91 |
#release_torch_resources,
|
| 92 |
#get_torch_info
|
| 93 |
)
|
|
|
|
| 94 |
import spaces
|
| 95 |
|
| 96 |
input_image_palette = []
|
|
@@ -199,113 +201,24 @@ condition_dict = {
|
|
| 199 |
"fill": 9,
|
| 200 |
}
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
# TODO: Add mask support
|
| 217 |
-
assert mask is None, "Mask not supported yet"
|
| 218 |
-
def get_condition(
|
| 219 |
-
self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
|
| 220 |
-
) -> Union[Image.Image, torch.Tensor]:
|
| 221 |
-
"""
|
| 222 |
-
Returns the condition image.
|
| 223 |
-
"""
|
| 224 |
-
if condition_type == "depth":
|
| 225 |
-
from transformers import pipeline
|
| 226 |
-
depth_pipe = pipeline(
|
| 227 |
-
task="depth-estimation",
|
| 228 |
-
model="LiheYoung/depth-anything-small-hf",
|
| 229 |
-
device="cuda",
|
| 230 |
-
)
|
| 231 |
-
source_image = raw_img.convert("RGB")
|
| 232 |
-
condition_img = depth_pipe(source_image)["depth"].convert("RGB")
|
| 233 |
-
return condition_img
|
| 234 |
-
elif condition_type == "canny":
|
| 235 |
-
img = np.array(raw_img)
|
| 236 |
-
edges = cv2.Canny(img, 100, 200)
|
| 237 |
-
edges = Image.fromarray(edges).convert("RGB")
|
| 238 |
-
return edges
|
| 239 |
-
elif condition_type == "subject":
|
| 240 |
-
return raw_img
|
| 241 |
-
elif condition_type == "coloring":
|
| 242 |
-
return raw_img.convert("L").convert("RGB")
|
| 243 |
-
elif condition_type == "deblurring":
|
| 244 |
-
condition_image = (
|
| 245 |
-
raw_img.convert("RGB")
|
| 246 |
-
.filter(ImageFilter.GaussianBlur(10))
|
| 247 |
-
.convert("RGB")
|
| 248 |
-
)
|
| 249 |
-
return condition_image
|
| 250 |
-
elif condition_type == "fill":
|
| 251 |
-
return raw_img.convert("RGB")
|
| 252 |
-
return self.condition
|
| 253 |
-
@property
|
| 254 |
-
def type_id(self) -> int:
|
| 255 |
-
"""
|
| 256 |
-
Returns the type id of the condition.
|
| 257 |
-
"""
|
| 258 |
-
return condition_dict[self.condition_type]
|
| 259 |
-
@classmethod
|
| 260 |
-
def get_type_id(cls, condition_type: str) -> int:
|
| 261 |
-
"""
|
| 262 |
-
Returns the type id of the condition.
|
| 263 |
-
"""
|
| 264 |
-
return condition_dict[condition_type]
|
| 265 |
-
def _encode_image(self, pipe: FluxPipeline, cond_img: Image.Image) -> torch.Tensor:
|
| 266 |
-
"""
|
| 267 |
-
Encodes an image condition into tokens using the pipeline.
|
| 268 |
-
"""
|
| 269 |
-
cond_img = pipe.image_processor.preprocess(cond_img)
|
| 270 |
-
cond_img = cond_img.to(pipe.device).to(pipe.dtype)
|
| 271 |
-
cond_img = pipe.vae.encode(cond_img).latent_dist.sample()
|
| 272 |
-
cond_img = (
|
| 273 |
-
cond_img - pipe.vae.config.shift_factor
|
| 274 |
-
) * pipe.vae.config.scaling_factor
|
| 275 |
-
cond_tokens = pipe._pack_latents(cond_img, *cond_img.shape)
|
| 276 |
-
cond_ids = pipe._prepare_latent_image_ids(
|
| 277 |
-
cond_img.shape[0],
|
| 278 |
-
cond_img.shape[2]//2,
|
| 279 |
-
cond_img.shape[3]//2,
|
| 280 |
-
pipe.device,
|
| 281 |
-
pipe.dtype,
|
| 282 |
-
)
|
| 283 |
-
return cond_tokens, cond_ids
|
| 284 |
-
def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
| 285 |
-
"""
|
| 286 |
-
Encodes the condition into tokens, ids and type_id.
|
| 287 |
-
"""
|
| 288 |
-
if self.condition_type in [
|
| 289 |
-
"depth",
|
| 290 |
-
"canny",
|
| 291 |
-
"subject",
|
| 292 |
-
"coloring",
|
| 293 |
-
"deblurring",
|
| 294 |
-
"fill",
|
| 295 |
-
]:
|
| 296 |
-
tokens, ids = self._encode_image(pipe, self.condition)
|
| 297 |
-
else:
|
| 298 |
-
raise NotImplementedError(
|
| 299 |
-
f"Condition type {self.condition_type} not implemented"
|
| 300 |
-
)
|
| 301 |
-
type_id = torch.ones_like(ids[:, :1]) * self.type_id
|
| 302 |
-
return tokens, ids, type_id
|
| 303 |
|
| 304 |
-
# @spaces.GPU(duration=140, progress=gr.Progress(track_tqdm=True))
|
| 305 |
-
# def generate_image(pipe, generate_params, progress=gr.Progress(track_tqdm=True)):
|
| 306 |
-
# return pipe(**generate_params)
|
| 307 |
|
| 308 |
-
@spaces.GPU(duration=
|
|
|
|
| 309 |
def generate_image_lowmem(
|
| 310 |
text,
|
| 311 |
neg_prompt=None,
|
|
@@ -331,195 +244,205 @@ def generate_image_lowmem(
|
|
| 331 |
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
| 332 |
|
| 333 |
#initialize_cuda()
|
| 334 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 335 |
-
#from src.condition import Condition
|
| 336 |
|
| 337 |
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
| 338 |
#print(f"\n {get_torch_info()}\n")
|
| 339 |
# Disable gradient calculations
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
else:
|
| 440 |
-
print(f"Method {method_name} not found in pipe.")
|
| 441 |
-
if 'condition_type' in config:
|
| 442 |
-
condition_type = config['condition_type']
|
| 443 |
-
if condition_type == "coloring":
|
| 444 |
-
#pipe.enable_coloring()
|
| 445 |
-
print("\nEnabled coloring.\n")
|
| 446 |
-
elif condition_type == "deblurring":
|
| 447 |
-
#pipe.enable_deblurring()
|
| 448 |
-
print("\nEnabled deblurring.\n")
|
| 449 |
-
elif condition_type == "fill":
|
| 450 |
-
#pipe.enable_fill()
|
| 451 |
-
print("\nEnabled fill.\n")
|
| 452 |
-
elif condition_type == "depth":
|
| 453 |
-
#pipe.enable_depth()
|
| 454 |
-
print("\nEnabled depth.\n")
|
| 455 |
-
elif condition_type == "canny":
|
| 456 |
-
#pipe.enable_canny()
|
| 457 |
-
print("\nEnabled canny.\n")
|
| 458 |
-
elif condition_type == "subject":
|
| 459 |
-
#pipe.enable_subject()
|
| 460 |
-
print("\nEnabled subject.\n")
|
| 461 |
else:
|
| 462 |
-
print(f"
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
}
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
"
|
| 503 |
-
"
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
|
| 524 |
def generate_ai_image_local (
|
| 525 |
map_option,
|
|
@@ -565,7 +488,7 @@ def generate_ai_image_local (
|
|
| 565 |
width = additional_parameters.pop('width', width)
|
| 566 |
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps)
|
| 567 |
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale)
|
| 568 |
-
print("Generating image with the following parameters
|
| 569 |
print(f"Model: {model}")
|
| 570 |
print(f"LoRA Weights: {lora_weights}")
|
| 571 |
print(f"Prompt: {prompt}")
|
|
@@ -578,8 +501,8 @@ def generate_ai_image_local (
|
|
| 578 |
print(f"Additional Parameters: {additional_parameters}")
|
| 579 |
print(f"Conditioned Image: {conditioned_image}")
|
| 580 |
print(f"Conditioned Image Strength: {strength}")
|
| 581 |
-
print(f"pipeline: {pipeline_name}")
|
| 582 |
-
|
| 583 |
text=prompt,
|
| 584 |
model_name=model,
|
| 585 |
neg_prompt=negative_prompt,
|
|
@@ -594,6 +517,7 @@ def generate_ai_image_local (
|
|
| 594 |
strength=strength,
|
| 595 |
additional_parameters=additional_parameters
|
| 596 |
)
|
|
|
|
| 597 |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
| 598 |
image.save(tmp.name, format="PNG")
|
| 599 |
constants.temp_files.append(tmp.name)
|
|
@@ -684,7 +608,8 @@ def on_prerendered_gallery_selection(event_data: gr.SelectData):
|
|
| 684 |
global current_prerendered_image
|
| 685 |
selected_index = event_data.index
|
| 686 |
selected_image = constants.pre_rendered_maps_paths[selected_index]
|
| 687 |
-
print(f"
|
|
|
|
| 688 |
current_prerendered_image.value = selected_image
|
| 689 |
return current_prerendered_image
|
| 690 |
|
|
@@ -1021,11 +946,11 @@ with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',
|
|
| 1021 |
)
|
| 1022 |
|
| 1023 |
with gr.Row():
|
| 1024 |
-
with gr.Accordion("Generate AI Image (click here)", open = False):
|
| 1025 |
with gr.Row():
|
| 1026 |
with gr.Column():
|
| 1027 |
model_options = gr.Dropdown(
|
| 1028 |
-
label="Model
|
| 1029 |
choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"],
|
| 1030 |
value="Cossale/Frames2-Flex.1",
|
| 1031 |
elem_classes="solid"
|
|
|
|
| 8 |
|
| 9 |
from PIL import Image, ImageFilter
|
| 10 |
import cv2
|
| 11 |
+
|
| 12 |
import utils.constants as constants
|
| 13 |
|
| 14 |
from haishoku.haishoku import Haishoku
|
|
|
|
| 92 |
#release_torch_resources,
|
| 93 |
#get_torch_info
|
| 94 |
)
|
| 95 |
+
from src.condition import Condition
|
| 96 |
import spaces
|
| 97 |
|
| 98 |
input_image_palette = []
|
|
|
|
| 201 |
"fill": 9,
|
| 202 |
}
|
| 203 |
|
| 204 |
+
@spaces.GPU(duration=120, progress=gr.Progress(track_tqdm=True))
|
| 205 |
+
def generate_image(pipe, conditions, generate_params, progress=gr.Progress(track_tqdm=True)):
|
| 206 |
+
gr.Info("Generating AI image...",duration=5)
|
| 207 |
+
result = pipe(**generate_params)
|
| 208 |
+
image = result.images[0]
|
| 209 |
+
# Clean up
|
| 210 |
+
del result
|
| 211 |
+
del conditions
|
| 212 |
+
# Delete the pipeline and clear cache
|
| 213 |
+
del pipe
|
| 214 |
+
torch.cuda.empty_cache()
|
| 215 |
+
torch.cuda.ipc_collect()
|
| 216 |
+
print(torch.cuda.memory_summary(device=None, abbreviated=False))
|
| 217 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
@spaces.GPU(duration=90)
|
| 221 |
+
@torch.no_grad()
|
| 222 |
def generate_image_lowmem(
|
| 223 |
text,
|
| 224 |
neg_prompt=None,
|
|
|
|
| 244 |
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
| 245 |
|
| 246 |
#initialize_cuda()
|
| 247 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 248 |
|
| 249 |
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
| 250 |
#print(f"\n {get_torch_info()}\n")
|
| 251 |
# Disable gradient calculations
|
| 252 |
+
#with torch.no_grad():
|
| 253 |
+
gr.Info("Initialize the pipeline inside the context manager",duration=5)
|
| 254 |
+
# Initialize the pipeline inside the context manager
|
| 255 |
+
pipe = pipeline_class.from_pretrained(
|
| 256 |
+
model_name,
|
| 257 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
| 258 |
+
).to(device)
|
| 259 |
+
# Optionally, don't use CPU offload if not necessary
|
| 260 |
|
| 261 |
+
# alternative version that may be more efficient
|
| 262 |
+
# pipe.enable_sequential_cpu_offload()
|
| 263 |
+
if pipeline_name == "FluxPipeline":
|
| 264 |
+
pipe.enable_model_cpu_offload()
|
| 265 |
+
pipe.vae.enable_slicing()
|
| 266 |
+
#pipe.vae.enable_tiling()
|
| 267 |
+
else:
|
| 268 |
+
pipe.enable_model_cpu_offload()
|
| 269 |
+
|
| 270 |
+
# Access the tokenizer from the pipeline
|
| 271 |
+
tokenizer = pipe.tokenizer
|
| 272 |
+
|
| 273 |
+
# Check if add_prefix_space is set and convert to slow tokenizer if necessary
|
| 274 |
+
if getattr(tokenizer, 'add_prefix_space', False):
|
| 275 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, device_map = 'cpu')
|
| 276 |
+
# Update the pipeline's tokenizer
|
| 277 |
+
pipe.tokenizer = tokenizer
|
| 278 |
+
pipe.to(device)
|
| 279 |
+
|
| 280 |
+
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 281 |
+
if flash_attention_enabled == False:
|
| 282 |
+
#Enable xFormers memory-efficient attention (optional)
|
| 283 |
+
#pipe.enable_xformers_memory_efficient_attention()
|
| 284 |
+
print("\nEnabled xFormers memory-efficient attention.\n")
|
| 285 |
+
else:
|
| 286 |
+
pipe.attn_implementation="flash_attention_2"
|
| 287 |
+
print("\nEnabled flash_attention_2.\n")
|
| 288 |
+
|
| 289 |
+
condition_type = "subject"
|
| 290 |
+
# Load LoRA weights
|
| 291 |
+
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
|
| 292 |
+
if lora_weights:
|
| 293 |
+
for lora_weight in lora_weights:
|
| 294 |
+
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
| 295 |
+
lora_weight_set = False
|
| 296 |
+
if lora_configs:
|
| 297 |
+
for config in lora_configs:
|
| 298 |
+
# Load LoRA weights with optional weight_name and adapter_name
|
| 299 |
+
if 'weight_name' in config:
|
| 300 |
+
weight_name = config.get("weight_name")
|
| 301 |
+
adapter_name = config.get("adapter_name")
|
| 302 |
+
lora_collection = config.get("lora_collection")
|
| 303 |
+
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
|
| 304 |
+
pipe.load_lora_weights(
|
| 305 |
+
lora_collection,
|
| 306 |
+
weight_name=weight_name,
|
| 307 |
+
adapter_name=adapter_name,
|
| 308 |
+
token=constants.HF_API_TOKEN
|
| 309 |
+
)
|
| 310 |
+
lora_weight_set = True
|
| 311 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
| 312 |
+
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
|
| 313 |
+
pipe.load_lora_weights(
|
| 314 |
+
lora_collection,
|
| 315 |
+
weight_name=weight_name,
|
| 316 |
+
token=constants.HF_API_TOKEN
|
| 317 |
+
)
|
| 318 |
+
lora_weight_set = True
|
| 319 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
| 320 |
+
elif weight_name and adapter_name and lora_weight_set == False:
|
| 321 |
+
pipe.load_lora_weights(
|
| 322 |
+
lora_weight,
|
| 323 |
+
weight_name=weight_name,
|
| 324 |
+
adapter_name=adapter_name,
|
| 325 |
+
token=constants.HF_API_TOKEN
|
| 326 |
+
)
|
| 327 |
+
lora_weight_set = True
|
| 328 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 329 |
+
elif weight_name and adapter_name==None and lora_weight_set == False:
|
| 330 |
+
pipe.load_lora_weights(
|
| 331 |
+
lora_weight,
|
| 332 |
+
weight_name=weight_name,
|
| 333 |
+
token=constants.HF_API_TOKEN
|
| 334 |
+
)
|
| 335 |
+
lora_weight_set = True
|
| 336 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 337 |
+
elif lora_weight_set == False:
|
| 338 |
+
pipe.load_lora_weights(
|
| 339 |
+
lora_weight,
|
| 340 |
+
token=constants.HF_API_TOKEN
|
| 341 |
+
)
|
| 342 |
+
lora_weight_set = True
|
| 343 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
| 344 |
+
# Apply 'pipe' configurations if present
|
| 345 |
+
if 'pipe' in config:
|
| 346 |
+
pipe_config = config['pipe']
|
| 347 |
+
for method_name, params in pipe_config.items():
|
| 348 |
+
method = getattr(pipe, method_name, None)
|
| 349 |
+
if method:
|
| 350 |
+
print(f"Applying pipe method: {method_name} with params: {params}")
|
| 351 |
+
method(**params)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
else:
|
| 353 |
+
print(f"Method {method_name} not found in pipe.")
|
| 354 |
+
if 'condition_type' in config:
|
| 355 |
+
condition_type = config['condition_type']
|
| 356 |
+
if condition_type == "coloring":
|
| 357 |
+
#pipe.enable_coloring()
|
| 358 |
+
print("\nEnabled coloring.\n")
|
| 359 |
+
elif condition_type == "deblurring":
|
| 360 |
+
#pipe.enable_deblurring()
|
| 361 |
+
print("\nEnabled deblurring.\n")
|
| 362 |
+
elif condition_type == "fill":
|
| 363 |
+
#pipe.enable_fill()
|
| 364 |
+
print("\nEnabled fill.\n")
|
| 365 |
+
elif condition_type == "depth":
|
| 366 |
+
#pipe.enable_depth()
|
| 367 |
+
print("\nEnabled depth.\n")
|
| 368 |
+
elif condition_type == "canny":
|
| 369 |
+
#pipe.enable_canny()
|
| 370 |
+
print("\nEnabled canny.\n")
|
| 371 |
+
elif condition_type == "subject":
|
| 372 |
+
#pipe.enable_subject()
|
| 373 |
+
print("\nEnabled subject.\n")
|
| 374 |
+
else:
|
| 375 |
+
print(f"Condition type {condition_type} not implemented.")
|
| 376 |
+
else:
|
| 377 |
+
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
| 378 |
+
gr.Info("lora_weights are loaded",duration=5)
|
| 379 |
+
# Set the random seed for reproducibility
|
| 380 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 381 |
+
conditions = []
|
| 382 |
+
if conditioned_image is not None:
|
| 383 |
+
conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height)
|
| 384 |
+
condition = Condition(condition_type, conditioned_image)
|
| 385 |
+
conditions.append(condition)
|
| 386 |
+
print(f"\nAdded conditioned image.\n {conditioned_image.size}")
|
| 387 |
+
# Prepare the parameters for image generation
|
| 388 |
+
additional_parameters ={
|
| 389 |
+
"strength": strength,
|
| 390 |
+
"image": conditioned_image,
|
| 391 |
}
|
| 392 |
+
else:
|
| 393 |
+
print("\nNo conditioned image provided.")
|
| 394 |
+
if neg_prompt!=None:
|
| 395 |
+
true_cfg_scale=1.1
|
| 396 |
+
additional_parameters ={
|
| 397 |
+
"negative_prompt": neg_prompt,
|
| 398 |
+
"true_cfg_scale": true_cfg_scale,
|
| 399 |
+
}
|
| 400 |
+
# handle long prompts by splitting them
|
| 401 |
+
if approximate_token_count(text) > 76:
|
| 402 |
+
prompt, prompt2 = split_prompt_precisely(text)
|
| 403 |
+
prompt_parameters = {
|
| 404 |
+
"prompt" : prompt,
|
| 405 |
+
"prompt_2": prompt2
|
| 406 |
+
}
|
| 407 |
+
else:
|
| 408 |
+
prompt_parameters = {
|
| 409 |
+
"prompt" :text
|
| 410 |
+
}
|
| 411 |
+
additional_parameters.update(prompt_parameters)
|
| 412 |
+
# Combine all parameters
|
| 413 |
+
generate_params = {
|
| 414 |
+
"height": image_height,
|
| 415 |
+
"width": image_width,
|
| 416 |
+
"guidance_scale": guidance_scale,
|
| 417 |
+
"num_inference_steps": num_inference_steps,
|
| 418 |
+
"generator": generator,
|
| 419 |
+
}
|
| 420 |
+
if additional_parameters:
|
| 421 |
+
generate_params.update(additional_parameters)
|
| 422 |
+
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
| 423 |
+
print(f"generate_params: {generate_params}")
|
| 424 |
+
import pickle
|
| 425 |
+
|
| 426 |
+
try:
|
| 427 |
+
pickle.dumps(pipe)
|
| 428 |
+
print("pipe is picklable.\n")
|
| 429 |
+
except pickle.PicklingError:
|
| 430 |
+
print("pipe is not picklable\n.")
|
| 431 |
+
|
| 432 |
+
try:
|
| 433 |
+
pickle.dumps(conditions)
|
| 434 |
+
print("conditions is picklable.\n")
|
| 435 |
+
except pickle.PicklingError:
|
| 436 |
+
print("conditions is not picklable.\n")
|
| 437 |
+
|
| 438 |
+
try:
|
| 439 |
+
pickle.dumps(generator)
|
| 440 |
+
print("generator is picklable.\n")
|
| 441 |
+
except pickle.PicklingError:
|
| 442 |
+
print("generator is not picklable.\n")
|
| 443 |
+
|
| 444 |
+
return pipe, conditions, generate_params
|
| 445 |
+
|
| 446 |
|
| 447 |
def generate_ai_image_local (
|
| 448 |
map_option,
|
|
|
|
| 488 |
width = additional_parameters.pop('width', width)
|
| 489 |
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps)
|
| 490 |
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale)
|
| 491 |
+
print("Generating image with the following parameters:\n")
|
| 492 |
print(f"Model: {model}")
|
| 493 |
print(f"LoRA Weights: {lora_weights}")
|
| 494 |
print(f"Prompt: {prompt}")
|
|
|
|
| 501 |
print(f"Additional Parameters: {additional_parameters}")
|
| 502 |
print(f"Conditioned Image: {conditioned_image}")
|
| 503 |
print(f"Conditioned Image Strength: {strength}")
|
| 504 |
+
print(f"pipeline: {pipeline_name}\n")
|
| 505 |
+
pipe, conditions, generate_params = generate_image_lowmem(
|
| 506 |
text=prompt,
|
| 507 |
model_name=model,
|
| 508 |
neg_prompt=negative_prompt,
|
|
|
|
| 517 |
strength=strength,
|
| 518 |
additional_parameters=additional_parameters
|
| 519 |
)
|
| 520 |
+
image = generate_image(pipe, conditions, **generate_params)
|
| 521 |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
| 522 |
image.save(tmp.name, format="PNG")
|
| 523 |
constants.temp_files.append(tmp.name)
|
|
|
|
| 608 |
global current_prerendered_image
|
| 609 |
selected_index = event_data.index
|
| 610 |
selected_image = constants.pre_rendered_maps_paths[selected_index]
|
| 611 |
+
print(f"Template Image Selected: {selected_image} ({event_data.index})\n")
|
| 612 |
+
gr.Info(f"Template Image Selected: {selected_image} ({event_data.index})",duration=5)
|
| 613 |
current_prerendered_image.value = selected_image
|
| 614 |
return current_prerendered_image
|
| 615 |
|
|
|
|
| 946 |
)
|
| 947 |
|
| 948 |
with gr.Row():
|
| 949 |
+
with gr.Accordion("Generate AI Image (click here for options)", open = False):
|
| 950 |
with gr.Row():
|
| 951 |
with gr.Column():
|
| 952 |
model_options = gr.Dropdown(
|
| 953 |
+
label="Choose an AI Model*",
|
| 954 |
choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"],
|
| 955 |
value="Cossale/Frames2-Flex.1",
|
| 956 |
elem_classes="solid"
|
utils/constants.py
CHANGED
|
@@ -54,6 +54,7 @@ def load_env_vars(env_path):
|
|
| 54 |
# os.environ['TMPDIR'] = r'e:\\TMP'
|
| 55 |
# os.environ['XDG_CACHE_HOME'] = r'E:\\cache'
|
| 56 |
|
|
|
|
| 57 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
| 58 |
if not HF_API_TOKEN:
|
| 59 |
raise ValueError("HF_TOKEN is not set. Please check your .env file.")
|
|
|
|
| 54 |
# os.environ['TMPDIR'] = r'e:\\TMP'
|
| 55 |
# os.environ['XDG_CACHE_HOME'] = r'E:\\cache'
|
| 56 |
|
| 57 |
+
USE_FLASH_ATTENTION = os.getenv("USE_FLASH_ATTENTION", "0") == "1"
|
| 58 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
| 59 |
if not HF_API_TOKEN:
|
| 60 |
raise ValueError("HF_TOKEN is not set. Please check your .env file.")
|