Spaces:
Running
Running
| import gradio as gr | |
| from PIL import Image | |
| import json | |
| from byaldi import RAGMultiModalModel | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| # Load models | |
| def load_models(): | |
| RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
| model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", | |
| trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
| return RAG, model, processor | |
| RAG, model, processor = load_models() | |
| # Function for OCR and search | |
| def ocr_and_search(image, keyword): | |
| text_query = "Extract all the text in Sanskrit and English from the image." | |
| # Prepare message for Qwen model | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text_query}, | |
| ], | |
| } | |
| ] | |
| # Process the image | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ).to("cpu") # Use CPU | |
| # Generate text | |
| with torch.no_grad(): | |
| generated_ids = model.generate(**inputs, max_new_tokens=2000) | |
| generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
| extracted_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| )[0] | |
| # Save extracted text to JSON | |
| output_json = {"query": text_query, "extracted_text": extracted_text} | |
| json_output = json.dumps(output_json, ensure_ascii=False, indent=4) | |
| # Perform keyword search | |
| keyword_lower = keyword.lower() | |
| sentences = extracted_text.split('. ') | |
| matched_sentences = [sentence for sentence in sentences if keyword_lower in sentence.lower()] | |
| return extracted_text, matched_sentences, json_output | |
| # Gradio App | |
| def app(image, keyword): | |
| extracted_text, search_results, json_output = ocr_and_search(image, keyword) | |
| search_results_str = "\n".join(search_results) if search_results else "No matches found." | |
| return extracted_text, search_results_str, json_output | |
| # Gradio Interface | |
| iface = gr.Interface( | |
| fn=app, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload an Image"), | |
| gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Extracted Text"), | |
| gr.Textbox(label="Search Results"), | |
| gr.JSON(label="JSON Output") | |
| ], | |
| title="OCR and Keyword Search in Images", | |
| ) | |
| # Launch Gradio App | |
| iface.launch() |