Spaces:
Sleeping
Sleeping
File size: 3,167 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 3fd800d 6349023 c2a782d aba723a 3898396 aba723a 2d114c5 aba723a 2d114c5 aba723a 2d114c5 aba723a 3898396 2d114c5 3898396 2d114c5 b28928e 2d114c5 3898396 aba723a 2d114c5 3a87a05 2d114c5 aba723a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
#import smolagents #to test
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
from huggingface_hub import InferenceClient
import json
api_url = "https://agents-course-unit4-scoring.hf.space"
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def load_questions_from_file(filepath="questions.json"):
try:
with open(filepath, "r", encoding="utf-8") as f:
questions_data = json.load(f)
if not questions_data:
print("Loaded file is empty.")
return "Loaded file is empty.", None
print(f"Loaded {len(questions_data)} questions from file.")
return "Loaded questions successfully.", questions_data
except FileNotFoundError:
print("File not found. Please run the API fetch first.")
return "File not found.", None
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
return f"Error decoding JSON: {e}", None
except Exception as e:
print(f"Unexpected error: {e}")
return f"Unexpected error: {e}", None
#set up
#token
#Model
#Agent
#
def run_and_submit_one():
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions by loading from local json
status_message, questions_data = load_questions_from_file()
if questions_data is not None and len(questions_data) > 0:
first_question = questions_data[0]
print("First question object:", first_question)
#To test
question_text = first_question.get("question")
task_id = first_question.get("task_id")
print(f"\nTask ID: {task_id}")
print(f"Question: {question_text}")
else:
print("No data found.")
# 3. Run your Agent
results_log = []
answers_payload = []
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
run_and_submit_one()
|