Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
| 4 |
import re
|
| 5 |
from tokenizers import normalizers
|
| 6 |
from tokenizers.normalizers import Sequence, Replace, Strip
|
| 7 |
from tokenizers import Regex
|
| 8 |
|
| 9 |
-
model1_path = "modernbert.bin"
|
| 10 |
-
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
|
| 11 |
-
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
|
| 12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
|
| 14 |
-
tokenizer =
|
| 15 |
|
| 16 |
-
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
| 17 |
-
model_1.load_state_dict(torch.load(model1_path, map_location=device))
|
| 18 |
-
model_1.to(device).eval()
|
| 19 |
|
| 20 |
-
model_2 =
|
| 21 |
-
model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device))
|
| 22 |
model_2.to(device).eval()
|
| 23 |
|
| 24 |
-
model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
| 25 |
-
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
|
| 26 |
-
model_3.to(device).eval()
|
| 27 |
-
|
| 28 |
|
| 29 |
label_mapping = {
|
| 30 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
|
@@ -66,15 +55,12 @@ def classify_text(text):
|
|
| 66 |
inputs = tokenizer(cleaned_text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 67 |
|
| 68 |
with torch.no_grad():
|
| 69 |
-
|
| 70 |
logits_2 = model_2(**inputs).logits
|
| 71 |
-
logits_3 = model_3(**inputs).logits
|
| 72 |
|
| 73 |
-
softmax_1 = torch.softmax(logits_1, dim=1)
|
| 74 |
softmax_2 = torch.softmax(logits_2, dim=1)
|
| 75 |
-
softmax_3 = torch.softmax(logits_3, dim=1)
|
| 76 |
|
| 77 |
-
averaged_probabilities =
|
| 78 |
probabilities = averaged_probabilities[0]
|
| 79 |
|
| 80 |
ai_probs = probabilities.clone()
|
|
@@ -92,7 +78,7 @@ def classify_text(text):
|
|
| 92 |
else:
|
| 93 |
result_message = (
|
| 94 |
f"**The text is** <span class='highlight-ai'>**{ai_total_prob:.2f}%** likely <b>AI generated</b>.</span>\n\n"
|
| 95 |
-
f"**Identified
|
| 96 |
)
|
| 97 |
|
| 98 |
return result_message
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import DebertaTokenizer, DebertaForSequenceClassification, get_linear_schedule_with_warmup
|
| 3 |
import torch
|
| 4 |
import re
|
| 5 |
from tokenizers import normalizers
|
| 6 |
from tokenizers.normalizers import Sequence, Replace, Strip
|
| 7 |
from tokenizers import Regex
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 10 |
|
| 11 |
+
tokenizer = DebertaTokenizer.from_pretrained('microsoft/deberta-base')
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
model_2 = DebertaForSequenceClassification.from_pretrained("mihalykiss/best_merged_41_2", num_labels=41)
|
|
|
|
| 15 |
model_2.to(device).eval()
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
label_mapping = {
|
| 19 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
|
|
|
| 55 |
inputs = tokenizer(cleaned_text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 56 |
|
| 57 |
with torch.no_grad():
|
| 58 |
+
|
| 59 |
logits_2 = model_2(**inputs).logits
|
|
|
|
| 60 |
|
|
|
|
| 61 |
softmax_2 = torch.softmax(logits_2, dim=1)
|
|
|
|
| 62 |
|
| 63 |
+
averaged_probabilities = softmax_2
|
| 64 |
probabilities = averaged_probabilities[0]
|
| 65 |
|
| 66 |
ai_probs = probabilities.clone()
|
|
|
|
| 78 |
else:
|
| 79 |
result_message = (
|
| 80 |
f"**The text is** <span class='highlight-ai'>**{ai_total_prob:.2f}%** likely <b>AI generated</b>.</span>\n\n"
|
| 81 |
+
f"**Identified LLM: {ai_argmax_model}**"
|
| 82 |
)
|
| 83 |
|
| 84 |
return result_message
|