Spaces:
Running
Running
Commit
·
dad3685
1
Parent(s):
72241b4
second model ensemble
Browse files
app.py
CHANGED
|
@@ -3,12 +3,18 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
| 3 |
import torch
|
| 4 |
|
| 5 |
model_path = "modernbert.bin"
|
|
|
|
| 6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
label_mapping = {
|
| 14 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
|
@@ -30,7 +36,11 @@ def classify_text(text):
|
|
| 30 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 31 |
|
| 32 |
with torch.no_grad():
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
ai_probs = probabilities.clone()
|
| 36 |
ai_probs[24] = 0
|
|
@@ -53,7 +63,6 @@ def classify_text(text):
|
|
| 53 |
return result_message
|
| 54 |
|
| 55 |
|
| 56 |
-
|
| 57 |
title = "AI Text Detector"
|
| 58 |
|
| 59 |
description = """
|
|
|
|
| 3 |
import torch
|
| 4 |
|
| 5 |
model_path = "modernbert.bin"
|
| 6 |
+
huggingface_model_url = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
|
| 7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 8 |
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
| 10 |
+
|
| 11 |
+
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
| 12 |
+
model_1.load_state_dict(torch.load(model_path, map_location=device))
|
| 13 |
+
model_1.to(device).eval()
|
| 14 |
+
|
| 15 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
| 16 |
+
model_2.load_state_dict(torch.hub.load_state_dict_from_url(huggingface_model_url, map_location=device))
|
| 17 |
+
model_2.to(device).eval()
|
| 18 |
|
| 19 |
label_mapping = {
|
| 20 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
|
|
|
| 36 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 37 |
|
| 38 |
with torch.no_grad():
|
| 39 |
+
logits_1 = model_1(**inputs).logits
|
| 40 |
+
logits_2 = model_2(**inputs).logits
|
| 41 |
+
|
| 42 |
+
avg_logits = (logits_1 + logits_2) / 2
|
| 43 |
+
probabilities = torch.softmax(avg_logits, dim=1)[0]
|
| 44 |
|
| 45 |
ai_probs = probabilities.clone()
|
| 46 |
ai_probs[24] = 0
|
|
|
|
| 63 |
return result_message
|
| 64 |
|
| 65 |
|
|
|
|
| 66 |
title = "AI Text Detector"
|
| 67 |
|
| 68 |
description = """
|