Spaces:
Runtime error
Runtime error
zR
commited on
Commit
·
e1d35f0
1
Parent(s):
4ddbeae
use cogview3 model
Browse files
app.py
CHANGED
|
@@ -5,25 +5,15 @@ import time
|
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
-
import numpy as np
|
| 9 |
import random
|
| 10 |
import spaces # [uncomment to use ZeroGPU]
|
| 11 |
-
from diffusers import
|
| 12 |
import torch
|
| 13 |
from openai import OpenAI
|
| 14 |
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
-
model_repo_id = "black-forest-labs/FLUX.1-dev"
|
| 17 |
|
| 18 |
-
|
| 19 |
-
torch_dtype = torch.float16
|
| 20 |
-
else:
|
| 21 |
-
torch_dtype = torch.float32
|
| 22 |
-
|
| 23 |
-
pipe = FluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 24 |
-
pipe = pipe.to(device)
|
| 25 |
-
|
| 26 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 27 |
|
| 28 |
|
| 29 |
def clean_string(s):
|
|
@@ -134,9 +124,7 @@ threading.Thread(target=delete_old_files, daemon=True).start()
|
|
| 134 |
def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
| 135 |
progress=gr.Progress(track_tqdm=True)):
|
| 136 |
if randomize_seed:
|
| 137 |
-
seed = random.randint(0,
|
| 138 |
-
|
| 139 |
-
generator = torch.Generator().manual_seed(seed)
|
| 140 |
|
| 141 |
image = pipe(
|
| 142 |
prompt=prompt,
|
|
@@ -145,7 +133,7 @@ def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_infer
|
|
| 145 |
num_inference_steps=num_inference_steps,
|
| 146 |
width=width,
|
| 147 |
height=height,
|
| 148 |
-
generator=
|
| 149 |
).images[0]
|
| 150 |
return image, seed
|
| 151 |
|
|
@@ -207,7 +195,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 207 |
seed = gr.Slider(
|
| 208 |
label="Seed",
|
| 209 |
minimum=0,
|
| 210 |
-
maximum=
|
| 211 |
step=1,
|
| 212 |
value=0,
|
| 213 |
)
|
|
@@ -220,7 +208,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 220 |
minimum=512,
|
| 221 |
maximum=2048,
|
| 222 |
step=32,
|
| 223 |
-
value=1024,
|
| 224 |
)
|
| 225 |
|
| 226 |
height = gr.Slider(
|
|
|
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
import random
|
| 9 |
import spaces # [uncomment to use ZeroGPU]
|
| 10 |
+
from diffusers import CogView3PlusPipeline
|
| 11 |
import torch
|
| 12 |
from openai import OpenAI
|
| 13 |
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 15 |
|
| 16 |
+
pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def clean_string(s):
|
|
|
|
| 124 |
def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
| 125 |
progress=gr.Progress(track_tqdm=True)):
|
| 126 |
if randomize_seed:
|
| 127 |
+
seed = random.randint(0, 65536)
|
|
|
|
|
|
|
| 128 |
|
| 129 |
image = pipe(
|
| 130 |
prompt=prompt,
|
|
|
|
| 133 |
num_inference_steps=num_inference_steps,
|
| 134 |
width=width,
|
| 135 |
height=height,
|
| 136 |
+
generator=torch.Generator().manual_seed(seed)
|
| 137 |
).images[0]
|
| 138 |
return image, seed
|
| 139 |
|
|
|
|
| 195 |
seed = gr.Slider(
|
| 196 |
label="Seed",
|
| 197 |
minimum=0,
|
| 198 |
+
maximum=65536,
|
| 199 |
step=1,
|
| 200 |
value=0,
|
| 201 |
)
|
|
|
|
| 208 |
minimum=512,
|
| 209 |
maximum=2048,
|
| 210 |
step=32,
|
| 211 |
+
value=1024,
|
| 212 |
)
|
| 213 |
|
| 214 |
height = gr.Slider(
|