Spaces:
Runtime error
Runtime error
| from risk_biased.config.paths import ( | |
| data_dir, | |
| sample_dataset_path, | |
| val_dataset_path, | |
| train_dataset_path, | |
| test_dataset_path, | |
| log_path, | |
| ) | |
| # Data augmentation: | |
| normalize_angle = True | |
| random_rotation = False | |
| angle_std = 3.14 / 4 | |
| random_translation = False | |
| translation_distance_std = 0.1 | |
| p_exchange_two_first = 0.5 | |
| # Data diminution: | |
| min_num_observation = 2 | |
| max_size_lane = 50 | |
| train_dataset_size_limit = None | |
| val_dataset_size_limit = None | |
| max_num_agents = 50 | |
| max_num_objects = 50 | |
| # Data caracterization: | |
| time_scene = 9.1 | |
| dt = 0.1 | |
| num_steps = 11 | |
| num_steps_future = 80 | |
| # TODO: avoid conditioning on the name of the directory in the path | |
| if data_dir == "interactive_veh_type": | |
| map_state_dim = 2 + num_steps * 8 | |
| state_dim = 11 | |
| dynamic_state_dim = 5 | |
| elif data_dir == "interactive_full": | |
| map_state_dim = 2 | |
| state_dim = 5 | |
| dynamic_state_dim = 5 | |
| else: | |
| map_state_dim = 2 | |
| state_dim = 2 | |
| dynamic_state_dim = 2 | |
| # Variational Loss Hyperparameters | |
| kl_weight = 1.0 | |
| kl_threshold = 0.01 | |
| # Training Parameters | |
| learning_rate = 3e-4 | |
| batch_size = 64 | |
| accumulate_grad_batches = 2 | |
| num_epochs_cvae = 0 | |
| num_epochs_bias = 100 | |
| gpus = [1] | |
| seed = 0 # Give an integer value to seed will set seed for pseudo-random number generators in: pytorch, numpy, python.random | |
| num_workers = 8 | |
| # Model hyperparameter | |
| model_type = "interaction_biased" | |
| condition_on_ego_future = False | |
| latent_dim = 16 | |
| hidden_dim = 128 | |
| feature_dim = 16 | |
| num_vq = 512 | |
| latent_distribution = "gaussian" # "gaussian" or "quantized" | |
| is_mlp_residual = True | |
| num_hidden_layers = 3 | |
| num_blocks = 3 | |
| interaction_type = "Attention" # one of "ContextGating", "Attention", "Hybrid" | |
| ## MCG parameters | |
| mcg_dim_expansion = 2 | |
| mcg_num_layers = 0 | |
| ## Attention parameters | |
| num_attention_heads = 4 | |
| sequence_encoder_type = "MLP" # one of "MLP", "LSTM", "maskedLSTM" | |
| sequence_decoder_type = "MLP" # one of "MLP", "LSTM" | |
| # Risk Loss Hyperparameters | |
| cost_reduce = "discounted_mean" # choose in "discounted_mean", "mean", "min", "max", "now", "final" | |
| discount_factor = 0.95 # only used if cost_reduce == "discounted_mean", discounts the cost by this factor at each time step | |
| min_velocity_diff = 0.1 | |
| n_mc_samples_risk = 32 | |
| n_mc_samples_biased = 16 | |
| risk_weight = 1 | |
| risk_assymetry_factor = 30 | |
| use_risk_constraint = True # For encoder_biased only | |
| risk_constraint_update_every_n_epoch = ( | |
| 1 # For encoder_biased only, not used if use_risk_constraint == False | |
| ) | |
| risk_constraint_weight_update_factor = ( | |
| 1.5 # For encoder_biased only, not used if use_risk_constraint == False | |
| ) | |
| risk_constraint_weight_maximum = ( | |
| 1000 # For encoder_biased only, not used if use_risk_constraint == False | |
| ) | |
| # List files that should be saved as log | |
| files_to_log = [ | |
| "./risk_biased/models/biased_cvae_model.py", | |
| "./risk_biased/models/latent_distributions.py", | |
| ] | |