| 
							 | 
						from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						model_name = "pkshatech/GLuCoSE-base-ja" | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained(model_name) | 
					
					
						
						| 
							 | 
						model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def generate_answer(question): | 
					
					
						
						| 
							 | 
						  inputs = tokenizer(question, return_tensors="pt") | 
					
					
						
						| 
							 | 
						  outputs = model.generate(**inputs) | 
					
					
						
						| 
							 | 
						  answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
					
						
						| 
							 | 
						  return answer | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						from flask import Flask, request, jsonify | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						app = Flask(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@app.route('/', methods=['POST']) | 
					
					
						
						| 
							 | 
						def rag(): | 
					
					
						
						| 
							 | 
						  data = request.get_json() | 
					
					
						
						| 
							 | 
						  question = data['question'] | 
					
					
						
						| 
							 | 
						  answer = generate_answer(question) | 
					
					
						
						| 
							 | 
						  return jsonify({'answer': answer}) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == '__main__': | 
					
					
						
						| 
							 | 
						  app.run(debug=True, host='0.0.0.0', port=5000) |