Spaces:
Runtime error
Runtime error
| # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
| # | |
| # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
| # property and proprietary rights in and to this material, related | |
| # documentation and any modifications thereto. Any use, reproduction, | |
| # disclosure or distribution of this material and related documentation | |
| # without an express license agreement from NVIDIA CORPORATION or | |
| # its affiliates is strictly prohibited. | |
| # | |
| # Modified by Jiale Xu | |
| # The modifications are subject to the same license as the original. | |
| """ | |
| The renderer is a module that takes in rays, decides where to sample along each | |
| ray, and computes pixel colors using the volume rendering equation. | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .ray_marcher import MipRayMarcher2 | |
| from . import math_utils | |
| def generate_planes(): | |
| """ | |
| Defines planes by the three vectors that form the "axes" of the | |
| plane. Should work with arbitrary number of planes and planes of | |
| arbitrary orientation. | |
| Bugfix reference: https://github.com/NVlabs/eg3d/issues/67 | |
| """ | |
| return torch.tensor([[[1, 0, 0], | |
| [0, 1, 0], | |
| [0, 0, 1]], | |
| [[1, 0, 0], | |
| [0, 0, 1], | |
| [0, 1, 0]], | |
| [[0, 0, 1], | |
| [0, 1, 0], | |
| [1, 0, 0]]], dtype=torch.float32) | |
| def project_onto_planes(planes, coordinates): | |
| """ | |
| Does a projection of a 3D point onto a batch of 2D planes, | |
| returning 2D plane coordinates. | |
| Takes plane axes of shape n_planes, 3, 3 | |
| # Takes coordinates of shape N, M, 3 | |
| # returns projections of shape N*n_planes, M, 2 | |
| """ | |
| N, M, C = coordinates.shape | |
| n_planes, _, _ = planes.shape | |
| coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3) | |
| inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) | |
| projections = torch.bmm(coordinates, inv_planes) | |
| return projections[..., :2] | |
| def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): | |
| assert padding_mode == 'zeros' | |
| N, n_planes, C, H, W = plane_features.shape | |
| _, M, _ = coordinates.shape | |
| plane_features = plane_features.view(N*n_planes, C, H, W) | |
| dtype = plane_features.dtype | |
| coordinates = (2/box_warp) * coordinates # add specific box bounds | |
| projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1) | |
| output_features = torch.nn.functional.grid_sample( | |
| plane_features, | |
| projected_coordinates.to(dtype), | |
| mode=mode, | |
| padding_mode=padding_mode, | |
| align_corners=False, | |
| ).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) | |
| return output_features | |
| def sample_from_3dgrid(grid, coordinates): | |
| """ | |
| Expects coordinates in shape (batch_size, num_points_per_batch, 3) | |
| Expects grid in shape (1, channels, H, W, D) | |
| (Also works if grid has batch size) | |
| Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) | |
| """ | |
| batch_size, n_coords, n_dims = coordinates.shape | |
| sampled_features = torch.nn.functional.grid_sample( | |
| grid.expand(batch_size, -1, -1, -1, -1), | |
| coordinates.reshape(batch_size, 1, 1, -1, n_dims), | |
| mode='bilinear', | |
| padding_mode='zeros', | |
| align_corners=False, | |
| ) | |
| N, C, H, W, D = sampled_features.shape | |
| sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) | |
| return sampled_features | |
| class ImportanceRenderer(torch.nn.Module): | |
| """ | |
| Modified original version to filter out-of-box samples as TensoRF does. | |
| Reference: | |
| TensoRF: https://github.com/apchenstu/TensoRF/blob/main/models/tensorBase.py#L277 | |
| """ | |
| def __init__(self): | |
| super().__init__() | |
| self.activation_factory = self._build_activation_factory() | |
| self.ray_marcher = MipRayMarcher2(self.activation_factory) | |
| self.plane_axes = generate_planes() | |
| def _build_activation_factory(self): | |
| def activation_factory(options: dict): | |
| if options['clamp_mode'] == 'softplus': | |
| return lambda x: F.softplus(x - 1) # activation bias of -1 makes things initialize better | |
| else: | |
| assert False, "Renderer only supports `clamp_mode`=`softplus`!" | |
| return activation_factory | |
| def _forward_pass(self, depths: torch.Tensor, ray_directions: torch.Tensor, ray_origins: torch.Tensor, | |
| planes: torch.Tensor, decoder: nn.Module, rendering_options: dict): | |
| """ | |
| Additional filtering is applied to filter out-of-box samples. | |
| Modifications made by Zexin He. | |
| """ | |
| # context related variables | |
| batch_size, num_rays, samples_per_ray, _ = depths.shape | |
| device = depths.device | |
| # define sample points with depths | |
| sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) | |
| sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) | |
| # filter out-of-box samples | |
| mask_inbox = \ | |
| (rendering_options['sampler_bbox_min'] <= sample_coordinates) & \ | |
| (sample_coordinates <= rendering_options['sampler_bbox_max']) | |
| mask_inbox = mask_inbox.all(-1) | |
| # forward model according to all samples | |
| _out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) | |
| # set out-of-box samples to zeros(rgb) & -inf(sigma) | |
| SAFE_GUARD = 3 | |
| DATA_TYPE = _out['sigma'].dtype | |
| colors_pass = torch.zeros(batch_size, num_rays * samples_per_ray, 3, device=device, dtype=DATA_TYPE) | |
| densities_pass = torch.nan_to_num(torch.full((batch_size, num_rays * samples_per_ray, 1), -float('inf'), device=device, dtype=DATA_TYPE)) / SAFE_GUARD | |
| colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][mask_inbox], _out['sigma'][mask_inbox] | |
| # reshape back | |
| colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1]) | |
| densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1]) | |
| return colors_pass, densities_pass | |
| def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options): | |
| # self.plane_axes = self.plane_axes.to(ray_origins.device) | |
| if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto': | |
| ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) | |
| is_ray_valid = ray_end > ray_start | |
| if torch.any(is_ray_valid).item(): | |
| ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() | |
| ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() | |
| depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) | |
| else: | |
| # Create stratified depth samples | |
| depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) | |
| # Coarse Pass | |
| colors_coarse, densities_coarse = self._forward_pass( | |
| depths=depths_coarse, ray_directions=ray_directions, ray_origins=ray_origins, | |
| planes=planes, decoder=decoder, rendering_options=rendering_options) | |
| # Fine Pass | |
| N_importance = rendering_options['depth_resolution_importance'] | |
| if N_importance > 0: | |
| _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) | |
| depths_fine = self.sample_importance(depths_coarse, weights, N_importance) | |
| colors_fine, densities_fine = self._forward_pass( | |
| depths=depths_fine, ray_directions=ray_directions, ray_origins=ray_origins, | |
| planes=planes, decoder=decoder, rendering_options=rendering_options) | |
| all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, | |
| depths_fine, colors_fine, densities_fine) | |
| rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) | |
| else: | |
| rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) | |
| return rgb_final, depth_final, weights.sum(2) | |
| def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): | |
| plane_axes = self.plane_axes.to(planes.device) | |
| sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) | |
| out = decoder(sampled_features, sample_directions) | |
| if options.get('density_noise', 0) > 0: | |
| out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] | |
| return out | |
| def run_model_activated(self, planes, decoder, sample_coordinates, sample_directions, options): | |
| out = self.run_model(planes, decoder, sample_coordinates, sample_directions, options) | |
| out['sigma'] = self.activation_factory(options)(out['sigma']) | |
| return out | |
| def sort_samples(self, all_depths, all_colors, all_densities): | |
| _, indices = torch.sort(all_depths, dim=-2) | |
| all_depths = torch.gather(all_depths, -2, indices) | |
| all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) | |
| all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) | |
| return all_depths, all_colors, all_densities | |
| def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2, normals1=None, normals2=None): | |
| all_depths = torch.cat([depths1, depths2], dim = -2) | |
| all_colors = torch.cat([colors1, colors2], dim = -2) | |
| all_densities = torch.cat([densities1, densities2], dim = -2) | |
| if normals1 is not None and normals2 is not None: | |
| all_normals = torch.cat([normals1, normals2], dim = -2) | |
| else: | |
| all_normals = None | |
| _, indices = torch.sort(all_depths, dim=-2) | |
| all_depths = torch.gather(all_depths, -2, indices) | |
| all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) | |
| all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) | |
| if all_normals is not None: | |
| all_normals = torch.gather(all_normals, -2, indices.expand(-1, -1, -1, all_normals.shape[-1])) | |
| return all_depths, all_colors, all_normals, all_densities | |
| return all_depths, all_colors, all_densities | |
| def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): | |
| """ | |
| Return depths of approximately uniformly spaced samples along rays. | |
| """ | |
| N, M, _ = ray_origins.shape | |
| if disparity_space_sampling: | |
| depths_coarse = torch.linspace(0, | |
| 1, | |
| depth_resolution, | |
| device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) | |
| depth_delta = 1/(depth_resolution - 1) | |
| depths_coarse += torch.rand_like(depths_coarse) * depth_delta | |
| depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) | |
| else: | |
| if type(ray_start) == torch.Tensor: | |
| depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) | |
| depth_delta = (ray_end - ray_start) / (depth_resolution - 1) | |
| depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] | |
| else: | |
| depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) | |
| depth_delta = (ray_end - ray_start)/(depth_resolution - 1) | |
| depths_coarse += torch.rand_like(depths_coarse) * depth_delta | |
| return depths_coarse | |
| def sample_importance(self, z_vals, weights, N_importance): | |
| """ | |
| Return depths of importance sampled points along rays. See NeRF importance sampling for more. | |
| """ | |
| with torch.no_grad(): | |
| batch_size, num_rays, samples_per_ray, _ = z_vals.shape | |
| z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) | |
| weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher | |
| # smooth weights | |
| weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1), 2, 1, padding=1) | |
| weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() | |
| weights = weights + 0.01 | |
| z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) | |
| importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], | |
| N_importance).detach().reshape(batch_size, num_rays, N_importance, 1) | |
| return importance_z_vals | |
| def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): | |
| """ | |
| Sample @N_importance samples from @bins with distribution defined by @weights. | |
| Inputs: | |
| bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" | |
| weights: (N_rays, N_samples_) | |
| N_importance: the number of samples to draw from the distribution | |
| det: deterministic or not | |
| eps: a small number to prevent division by zero | |
| Outputs: | |
| samples: the sampled samples | |
| """ | |
| N_rays, N_samples_ = weights.shape | |
| weights = weights + eps # prevent division by zero (don't do inplace op!) | |
| pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) | |
| cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function | |
| cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) | |
| # padded to 0~1 inclusive | |
| if det: | |
| u = torch.linspace(0, 1, N_importance, device=bins.device) | |
| u = u.expand(N_rays, N_importance) | |
| else: | |
| u = torch.rand(N_rays, N_importance, device=bins.device) | |
| u = u.contiguous() | |
| inds = torch.searchsorted(cdf, u, right=True) | |
| below = torch.clamp_min(inds-1, 0) | |
| above = torch.clamp_max(inds, N_samples_) | |
| inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) | |
| cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) | |
| bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) | |
| denom = cdf_g[...,1]-cdf_g[...,0] | |
| denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled | |
| # anyway, therefore any value for it is fine (set to 1 here) | |
| samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0]) | |
| return samples | |