File size: 22,725 Bytes
5d2a97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
from utils.wan_wrapper import WanDiffusionWrapper
from utils.scheduler import SchedulerInterface
from typing import List, Optional
import torch
import torch.distributed as dist


class RollingForcingTrainingPipeline:
    def __init__(self,
                 denoising_step_list: List[int],
                 scheduler: SchedulerInterface,
                 generator: WanDiffusionWrapper,
                 num_frame_per_block=3,
                 independent_first_frame: bool = False,
                 same_step_across_blocks: bool = False,
                 last_step_only: bool = False,
                 num_max_frames: int = 21,
                 context_noise: int = 0,
                 **kwargs):
        super().__init__()
        self.scheduler = scheduler
        self.generator = generator
        self.denoising_step_list = denoising_step_list
        if self.denoising_step_list[-1] == 0:
            self.denoising_step_list = self.denoising_step_list[:-1]  # remove the zero timestep for inference

        # Wan specific hyperparameters
        self.num_transformer_blocks = 30
        self.frame_seq_length = 1560
        self.num_frame_per_block = num_frame_per_block
        self.context_noise = context_noise
        self.i2v = False

        self.kv_cache_clean = None
        self.kv_cache2 = None
        self.independent_first_frame = independent_first_frame
        self.same_step_across_blocks = same_step_across_blocks
        self.last_step_only = last_step_only
        self.kv_cache_size = num_max_frames * self.frame_seq_length

    def generate_and_sync_list(self, num_blocks, num_denoising_steps, device):
        rank = dist.get_rank() if dist.is_initialized() else 0

        if rank == 0:
            # Generate random indices
            indices = torch.randint(
                low=0,
                high=num_denoising_steps,
                size=(num_blocks,),
                device=device
            )
            if self.last_step_only:
                indices = torch.ones_like(indices) * (num_denoising_steps - 1)
        else:
            indices = torch.empty(num_blocks, dtype=torch.long, device=device)

        dist.broadcast(indices, src=0)  # Broadcast the random indices to all ranks
        return indices.tolist()
    
    def generate_list(self, num_blocks, num_denoising_steps, device):

        # Generate random indices
        indices = torch.randint(
            low=0,
            high=num_denoising_steps,
            size=(num_blocks,),
            device=device
        )
        if self.last_step_only:
            indices = torch.ones_like(indices) * (num_denoising_steps - 1)

        return indices.tolist()    


    def inference_with_rolling_forcing(
            self,
            noise: torch.Tensor,
            initial_latent: Optional[torch.Tensor] = None,
            return_sim_step: bool = False,
            **conditional_dict
    ) -> torch.Tensor:
        batch_size, num_frames, num_channels, height, width = noise.shape
        if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None):
            # If the first frame is independent and the first frame is provided, then the number of frames in the
            # noise should still be a multiple of num_frame_per_block
            assert num_frames % self.num_frame_per_block == 0
            num_blocks = num_frames // self.num_frame_per_block
        else:
            # Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning
            assert (num_frames - 1) % self.num_frame_per_block == 0
            num_blocks = (num_frames - 1) // self.num_frame_per_block
        num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0
        num_output_frames = num_frames + num_input_frames  # add the initial latent frames
        output = torch.zeros(
            [batch_size, num_output_frames, num_channels, height, width],
            device=noise.device,
            dtype=noise.dtype
        )

        # Step 1: Initialize KV cache to all zeros
        self._initialize_kv_cache(
            batch_size=batch_size, dtype=noise.dtype, device=noise.device
        )
        self._initialize_crossattn_cache(
            batch_size=batch_size, dtype=noise.dtype, device=noise.device
        )

        # implementing rolling forcing 
        # construct the rolling forcing windows
        num_denoising_steps = len(self.denoising_step_list)
        rolling_window_length_blocks = num_denoising_steps
        window_start_blocks = []
        window_end_blocks = []
        window_num = num_blocks + rolling_window_length_blocks - 1

        for window_index in range(window_num):
            start_block = max(0, window_index - rolling_window_length_blocks + 1)
            end_block = min(num_blocks - 1, window_index)
            window_start_blocks.append(start_block)
            window_end_blocks.append(end_block)

        # exit_flag indicates the window at which the model will backpropagate gradients.
        exit_flag = torch.randint(high=rolling_window_length_blocks, device=noise.device, size=())
        start_gradient_frame_index = num_output_frames - 21
        
        # init noisy cache
        noisy_cache = torch.zeros(
            [batch_size, num_output_frames, num_channels, height, width],
            device=noise.device,
            dtype=noise.dtype
        )

        # init denosing timestep, same accross windows
        shared_timestep = torch.ones(
            [batch_size, rolling_window_length_blocks * self.num_frame_per_block],
            device=noise.device,
            dtype=torch.float32)
        
        for index, current_timestep in enumerate(reversed(self.denoising_step_list)): # from clean to noisy 
            shared_timestep[:, index * self.num_frame_per_block:(index + 1) * self.num_frame_per_block] *= current_timestep


        # Denoising loop with rolling forcing
        for window_index in range(window_num):
            start_block = window_start_blocks[window_index]
            end_block = window_end_blocks[window_index] # include

            current_start_frame = start_block * self.num_frame_per_block
            current_end_frame = (end_block + 1) * self.num_frame_per_block # not include
            current_num_frames = current_end_frame - current_start_frame

            # noisy_input: new noise and previous denoised noisy frames, only last block is pure noise
            if current_num_frames == rolling_window_length_blocks * self.num_frame_per_block or current_start_frame == 0:
                noisy_input = torch.cat([
                    noisy_cache[:, current_start_frame : current_end_frame - self.num_frame_per_block],
                    noise[:, current_end_frame - self.num_frame_per_block : current_end_frame ]
                ], dim=1)
            else: # at the end of the video
                noisy_input = noisy_cache[:, current_start_frame:current_end_frame].clone()

            # init denosing timestep
            if current_num_frames == rolling_window_length_blocks * self.num_frame_per_block:
                current_timestep = shared_timestep
            elif current_start_frame == 0:
                current_timestep = shared_timestep[:,-current_num_frames:]
            elif current_end_frame == num_frames:
                current_timestep = shared_timestep[:,:current_num_frames]
            else:
                raise ValueError("current_num_frames should be equal to rolling_window_length_blocks * self.num_frame_per_block, or the first or last window.")
            
            require_grad = window_index % rolling_window_length_blocks == exit_flag
            if current_end_frame <= start_gradient_frame_index:
                require_grad = False

            # calling DiT
            if not require_grad:
                with torch.no_grad():
                    _, denoised_pred = self.generator(
                        noisy_image_or_video=noisy_input,
                        conditional_dict=conditional_dict,
                        timestep=current_timestep,
                        kv_cache=self.kv_cache_clean,
                        crossattn_cache=self.crossattn_cache,
                        current_start=current_start_frame * self.frame_seq_length
                    )
            else:
                _, denoised_pred = self.generator(
                        noisy_image_or_video=noisy_input,
                        conditional_dict=conditional_dict,
                        timestep=current_timestep,
                        kv_cache=self.kv_cache_clean,
                        crossattn_cache=self.crossattn_cache,
                        current_start=current_start_frame * self.frame_seq_length
                    )
                output[:, current_start_frame:current_end_frame] = denoised_pred
                

            # update noisy_cache, which is detached from the computation graph
            with torch.no_grad():
                for block_idx in range(start_block, end_block + 1):
                    
                    block_time_step = current_timestep[:, 
                                    (block_idx - start_block)*self.num_frame_per_block : 
                                    (block_idx - start_block+1)*self.num_frame_per_block].mean().item()
                    matches = torch.abs(self.denoising_step_list - block_time_step) < 1e-4
                    block_timestep_index = torch.nonzero(matches, as_tuple=True)[0]

                    if block_timestep_index == len(self.denoising_step_list) - 1:
                        continue
                    
                    next_timestep = self.denoising_step_list[block_timestep_index + 1].to(noise.device)

                    noisy_cache[:, block_idx * self.num_frame_per_block:
                                    (block_idx+1) * self.num_frame_per_block] = \
                        self.scheduler.add_noise(
                            denoised_pred.flatten(0, 1),
                            torch.randn_like(denoised_pred.flatten(0, 1)),
                            next_timestep * torch.ones(
                                [batch_size * current_num_frames], device=noise.device, dtype=torch.long)
                        ).unflatten(0, denoised_pred.shape[:2])[:, (block_idx - start_block)*self.num_frame_per_block:
                                                                    (block_idx - start_block+1)*self.num_frame_per_block]


            # rerun with timestep zero to update the clean cache, which is also detached from the computation graph
            with torch.no_grad():
                context_timestep = torch.ones_like(current_timestep) * self.context_noise
                # # add context noise
                # denoised_pred = self.scheduler.add_noise(
                #     denoised_pred.flatten(0, 1),
                #     torch.randn_like(denoised_pred.flatten(0, 1)),
                #     context_timestep * torch.ones(
                #         [batch_size * current_num_frames], device=noise.device, dtype=torch.long)
                # ).unflatten(0, denoised_pred.shape[:2])

                # only cache the first block
                denoised_pred = denoised_pred[:,:self.num_frame_per_block]
                context_timestep = context_timestep[:,:self.num_frame_per_block]
                self.generator(
                    noisy_image_or_video=denoised_pred,
                    conditional_dict=conditional_dict,
                    timestep=context_timestep,
                    kv_cache=self.kv_cache_clean,
                    crossattn_cache=self.crossattn_cache,
                    current_start=current_start_frame * self.frame_seq_length,
                    updating_cache=True,
                )

        # Step 3.5: Return the denoised timestep
        # can ignore since not used
        denoised_timestep_from, denoised_timestep_to = None, None

        return output, denoised_timestep_from, denoised_timestep_to



    def inference_with_self_forcing(
            self,
            noise: torch.Tensor,
            initial_latent: Optional[torch.Tensor] = None,
            return_sim_step: bool = False,
            **conditional_dict
    ) -> torch.Tensor:
        batch_size, num_frames, num_channels, height, width = noise.shape
        if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None):
            # If the first frame is independent and the first frame is provided, then the number of frames in the
            # noise should still be a multiple of num_frame_per_block
            assert num_frames % self.num_frame_per_block == 0
            num_blocks = num_frames // self.num_frame_per_block
        else:
            # Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning
            assert (num_frames - 1) % self.num_frame_per_block == 0
            num_blocks = (num_frames - 1) // self.num_frame_per_block
        num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0
        num_output_frames = num_frames + num_input_frames  # add the initial latent frames
        output = torch.zeros(
            [batch_size, num_output_frames, num_channels, height, width],
            device=noise.device,
            dtype=noise.dtype
        )

        # Step 1: Initialize KV cache to all zeros
        self._initialize_kv_cache(
            batch_size=batch_size, dtype=noise.dtype, device=noise.device
        )
        self._initialize_crossattn_cache(
            batch_size=batch_size, dtype=noise.dtype, device=noise.device
        )
        # if self.kv_cache_clean is None:
        #     self._initialize_kv_cache(
        #         batch_size=batch_size,
        #         dtype=noise.dtype,
        #         device=noise.device,
        #     )
        #     self._initialize_crossattn_cache(
        #         batch_size=batch_size,
        #         dtype=noise.dtype,
        #         device=noise.device
        #     )
        # else:
        #     # reset cross attn cache
        #     for block_index in range(self.num_transformer_blocks):
        #         self.crossattn_cache[block_index]["is_init"] = False
        #     # reset kv cache
        #     for block_index in range(len(self.kv_cache_clean)):
        #         self.kv_cache_clean[block_index]["global_end_index"] = torch.tensor(
        #             [0], dtype=torch.long, device=noise.device)
        #         self.kv_cache_clean[block_index]["local_end_index"] = torch.tensor(
        #             [0], dtype=torch.long, device=noise.device)

        # Step 2: Cache context feature
        current_start_frame = 0
        if initial_latent is not None:
            timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0
            # Assume num_input_frames is 1 + self.num_frame_per_block * num_input_blocks
            output[:, :1] = initial_latent
            with torch.no_grad():
                self.generator(
                    noisy_image_or_video=initial_latent,
                    conditional_dict=conditional_dict,
                    timestep=timestep * 0,
                    kv_cache=self.kv_cache_clean,
                    crossattn_cache=self.crossattn_cache,
                    current_start=current_start_frame * self.frame_seq_length
                )
            current_start_frame += 1

        # Step 3: Temporal denoising loop
        all_num_frames = [self.num_frame_per_block] * num_blocks
        if self.independent_first_frame and initial_latent is None:
            all_num_frames = [1] + all_num_frames
        num_denoising_steps = len(self.denoising_step_list)
        exit_flags = self.generate_and_sync_list(len(all_num_frames), num_denoising_steps, device=noise.device)
        start_gradient_frame_index = num_output_frames - 21

        # for block_index in range(num_blocks):
        for block_index, current_num_frames in enumerate(all_num_frames):
            noisy_input = noise[
                :, current_start_frame - num_input_frames:current_start_frame + current_num_frames - num_input_frames]

            # Step 3.1: Spatial denoising loop
            for index, current_timestep in enumerate(self.denoising_step_list):
                if self.same_step_across_blocks:
                    exit_flag = (index == exit_flags[0])
                else:
                    exit_flag = (index == exit_flags[block_index])  # Only backprop at the randomly selected timestep (consistent across all ranks)
                timestep = torch.ones(
                    [batch_size, current_num_frames],
                    device=noise.device,
                    dtype=torch.int64) * current_timestep

                if not exit_flag:
                    with torch.no_grad():
                        _, denoised_pred = self.generator(
                            noisy_image_or_video=noisy_input,
                            conditional_dict=conditional_dict,
                            timestep=timestep,
                            kv_cache=self.kv_cache_clean,
                            crossattn_cache=self.crossattn_cache,
                            current_start=current_start_frame * self.frame_seq_length
                        )
                        next_timestep = self.denoising_step_list[index + 1]
                        noisy_input = self.scheduler.add_noise(
                            denoised_pred.flatten(0, 1),
                            torch.randn_like(denoised_pred.flatten(0, 1)),
                            next_timestep * torch.ones(
                                [batch_size * current_num_frames], device=noise.device, dtype=torch.long)
                        ).unflatten(0, denoised_pred.shape[:2])
                else:
                    # for getting real output
                    # with torch.set_grad_enabled(current_start_frame >= start_gradient_frame_index):
                    if current_start_frame < start_gradient_frame_index:
                        with torch.no_grad():
                            _, denoised_pred = self.generator(
                                noisy_image_or_video=noisy_input,
                                conditional_dict=conditional_dict,
                                timestep=timestep,
                                kv_cache=self.kv_cache_clean,
                                crossattn_cache=self.crossattn_cache,
                                current_start=current_start_frame * self.frame_seq_length
                            )
                    else:
                        _, denoised_pred = self.generator(
                            noisy_image_or_video=noisy_input,
                            conditional_dict=conditional_dict,
                            timestep=timestep,
                            kv_cache=self.kv_cache_clean,
                            crossattn_cache=self.crossattn_cache,
                            current_start=current_start_frame * self.frame_seq_length
                        )
                    break

            # Step 3.2: record the model's output
            output[:, current_start_frame:current_start_frame + current_num_frames] = denoised_pred

            # Step 3.3: rerun with timestep zero to update the cache
            context_timestep = torch.ones_like(timestep) * self.context_noise
            # add context noise
            denoised_pred = self.scheduler.add_noise(
                denoised_pred.flatten(0, 1),
                torch.randn_like(denoised_pred.flatten(0, 1)),
                context_timestep * torch.ones(
                    [batch_size * current_num_frames], device=noise.device, dtype=torch.long)
            ).unflatten(0, denoised_pred.shape[:2])
            with torch.no_grad():
                self.generator(
                    noisy_image_or_video=denoised_pred,
                    conditional_dict=conditional_dict,
                    timestep=context_timestep,
                    kv_cache=self.kv_cache_clean,
                    crossattn_cache=self.crossattn_cache,
                    current_start=current_start_frame * self.frame_seq_length,
                    updating_cache=True,
                )

            # Step 3.4: update the start and end frame indices
            current_start_frame += current_num_frames

        # Step 3.5: Return the denoised timestep
        if not self.same_step_across_blocks:
            denoised_timestep_from, denoised_timestep_to = None, None
        elif exit_flags[0] == len(self.denoising_step_list) - 1:
            denoised_timestep_to = 0
            denoised_timestep_from = 1000 - torch.argmin(
                (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item()
        else:
            denoised_timestep_to = 1000 - torch.argmin(
                (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0] + 1].cuda()).abs(), dim=0).item()
            denoised_timestep_from = 1000 - torch.argmin(
                (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item()

        if return_sim_step:
            return output, denoised_timestep_from, denoised_timestep_to, exit_flags[0] + 1

        return output, denoised_timestep_from, denoised_timestep_to

    def _initialize_kv_cache(self, batch_size, dtype, device):
        """
        Initialize a Per-GPU KV cache for the Wan model.
        """
        kv_cache_clean = []

        for _ in range(self.num_transformer_blocks):
            kv_cache_clean.append({
                "k": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device),
                "global_end_index": torch.tensor([0], dtype=torch.long, device=device),
                "local_end_index": torch.tensor([0], dtype=torch.long, device=device)
            })

        self.kv_cache_clean = kv_cache_clean  # always store the clean cache

    def _initialize_crossattn_cache(self, batch_size, dtype, device):
        """
        Initialize a Per-GPU cross-attention cache for the Wan model.
        """
        crossattn_cache = []

        for _ in range(self.num_transformer_blocks):
            crossattn_cache.append({
                "k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "is_init": False
            })
        self.crossattn_cache = crossattn_cache