Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,725 Bytes
5d2a97a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
from utils.wan_wrapper import WanDiffusionWrapper
from utils.scheduler import SchedulerInterface
from typing import List, Optional
import torch
import torch.distributed as dist
class RollingForcingTrainingPipeline:
def __init__(self,
denoising_step_list: List[int],
scheduler: SchedulerInterface,
generator: WanDiffusionWrapper,
num_frame_per_block=3,
independent_first_frame: bool = False,
same_step_across_blocks: bool = False,
last_step_only: bool = False,
num_max_frames: int = 21,
context_noise: int = 0,
**kwargs):
super().__init__()
self.scheduler = scheduler
self.generator = generator
self.denoising_step_list = denoising_step_list
if self.denoising_step_list[-1] == 0:
self.denoising_step_list = self.denoising_step_list[:-1] # remove the zero timestep for inference
# Wan specific hyperparameters
self.num_transformer_blocks = 30
self.frame_seq_length = 1560
self.num_frame_per_block = num_frame_per_block
self.context_noise = context_noise
self.i2v = False
self.kv_cache_clean = None
self.kv_cache2 = None
self.independent_first_frame = independent_first_frame
self.same_step_across_blocks = same_step_across_blocks
self.last_step_only = last_step_only
self.kv_cache_size = num_max_frames * self.frame_seq_length
def generate_and_sync_list(self, num_blocks, num_denoising_steps, device):
rank = dist.get_rank() if dist.is_initialized() else 0
if rank == 0:
# Generate random indices
indices = torch.randint(
low=0,
high=num_denoising_steps,
size=(num_blocks,),
device=device
)
if self.last_step_only:
indices = torch.ones_like(indices) * (num_denoising_steps - 1)
else:
indices = torch.empty(num_blocks, dtype=torch.long, device=device)
dist.broadcast(indices, src=0) # Broadcast the random indices to all ranks
return indices.tolist()
def generate_list(self, num_blocks, num_denoising_steps, device):
# Generate random indices
indices = torch.randint(
low=0,
high=num_denoising_steps,
size=(num_blocks,),
device=device
)
if self.last_step_only:
indices = torch.ones_like(indices) * (num_denoising_steps - 1)
return indices.tolist()
def inference_with_rolling_forcing(
self,
noise: torch.Tensor,
initial_latent: Optional[torch.Tensor] = None,
return_sim_step: bool = False,
**conditional_dict
) -> torch.Tensor:
batch_size, num_frames, num_channels, height, width = noise.shape
if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None):
# If the first frame is independent and the first frame is provided, then the number of frames in the
# noise should still be a multiple of num_frame_per_block
assert num_frames % self.num_frame_per_block == 0
num_blocks = num_frames // self.num_frame_per_block
else:
# Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning
assert (num_frames - 1) % self.num_frame_per_block == 0
num_blocks = (num_frames - 1) // self.num_frame_per_block
num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0
num_output_frames = num_frames + num_input_frames # add the initial latent frames
output = torch.zeros(
[batch_size, num_output_frames, num_channels, height, width],
device=noise.device,
dtype=noise.dtype
)
# Step 1: Initialize KV cache to all zeros
self._initialize_kv_cache(
batch_size=batch_size, dtype=noise.dtype, device=noise.device
)
self._initialize_crossattn_cache(
batch_size=batch_size, dtype=noise.dtype, device=noise.device
)
# implementing rolling forcing
# construct the rolling forcing windows
num_denoising_steps = len(self.denoising_step_list)
rolling_window_length_blocks = num_denoising_steps
window_start_blocks = []
window_end_blocks = []
window_num = num_blocks + rolling_window_length_blocks - 1
for window_index in range(window_num):
start_block = max(0, window_index - rolling_window_length_blocks + 1)
end_block = min(num_blocks - 1, window_index)
window_start_blocks.append(start_block)
window_end_blocks.append(end_block)
# exit_flag indicates the window at which the model will backpropagate gradients.
exit_flag = torch.randint(high=rolling_window_length_blocks, device=noise.device, size=())
start_gradient_frame_index = num_output_frames - 21
# init noisy cache
noisy_cache = torch.zeros(
[batch_size, num_output_frames, num_channels, height, width],
device=noise.device,
dtype=noise.dtype
)
# init denosing timestep, same accross windows
shared_timestep = torch.ones(
[batch_size, rolling_window_length_blocks * self.num_frame_per_block],
device=noise.device,
dtype=torch.float32)
for index, current_timestep in enumerate(reversed(self.denoising_step_list)): # from clean to noisy
shared_timestep[:, index * self.num_frame_per_block:(index + 1) * self.num_frame_per_block] *= current_timestep
# Denoising loop with rolling forcing
for window_index in range(window_num):
start_block = window_start_blocks[window_index]
end_block = window_end_blocks[window_index] # include
current_start_frame = start_block * self.num_frame_per_block
current_end_frame = (end_block + 1) * self.num_frame_per_block # not include
current_num_frames = current_end_frame - current_start_frame
# noisy_input: new noise and previous denoised noisy frames, only last block is pure noise
if current_num_frames == rolling_window_length_blocks * self.num_frame_per_block or current_start_frame == 0:
noisy_input = torch.cat([
noisy_cache[:, current_start_frame : current_end_frame - self.num_frame_per_block],
noise[:, current_end_frame - self.num_frame_per_block : current_end_frame ]
], dim=1)
else: # at the end of the video
noisy_input = noisy_cache[:, current_start_frame:current_end_frame].clone()
# init denosing timestep
if current_num_frames == rolling_window_length_blocks * self.num_frame_per_block:
current_timestep = shared_timestep
elif current_start_frame == 0:
current_timestep = shared_timestep[:,-current_num_frames:]
elif current_end_frame == num_frames:
current_timestep = shared_timestep[:,:current_num_frames]
else:
raise ValueError("current_num_frames should be equal to rolling_window_length_blocks * self.num_frame_per_block, or the first or last window.")
require_grad = window_index % rolling_window_length_blocks == exit_flag
if current_end_frame <= start_gradient_frame_index:
require_grad = False
# calling DiT
if not require_grad:
with torch.no_grad():
_, denoised_pred = self.generator(
noisy_image_or_video=noisy_input,
conditional_dict=conditional_dict,
timestep=current_timestep,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
else:
_, denoised_pred = self.generator(
noisy_image_or_video=noisy_input,
conditional_dict=conditional_dict,
timestep=current_timestep,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
output[:, current_start_frame:current_end_frame] = denoised_pred
# update noisy_cache, which is detached from the computation graph
with torch.no_grad():
for block_idx in range(start_block, end_block + 1):
block_time_step = current_timestep[:,
(block_idx - start_block)*self.num_frame_per_block :
(block_idx - start_block+1)*self.num_frame_per_block].mean().item()
matches = torch.abs(self.denoising_step_list - block_time_step) < 1e-4
block_timestep_index = torch.nonzero(matches, as_tuple=True)[0]
if block_timestep_index == len(self.denoising_step_list) - 1:
continue
next_timestep = self.denoising_step_list[block_timestep_index + 1].to(noise.device)
noisy_cache[:, block_idx * self.num_frame_per_block:
(block_idx+1) * self.num_frame_per_block] = \
self.scheduler.add_noise(
denoised_pred.flatten(0, 1),
torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones(
[batch_size * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])[:, (block_idx - start_block)*self.num_frame_per_block:
(block_idx - start_block+1)*self.num_frame_per_block]
# rerun with timestep zero to update the clean cache, which is also detached from the computation graph
with torch.no_grad():
context_timestep = torch.ones_like(current_timestep) * self.context_noise
# # add context noise
# denoised_pred = self.scheduler.add_noise(
# denoised_pred.flatten(0, 1),
# torch.randn_like(denoised_pred.flatten(0, 1)),
# context_timestep * torch.ones(
# [batch_size * current_num_frames], device=noise.device, dtype=torch.long)
# ).unflatten(0, denoised_pred.shape[:2])
# only cache the first block
denoised_pred = denoised_pred[:,:self.num_frame_per_block]
context_timestep = context_timestep[:,:self.num_frame_per_block]
self.generator(
noisy_image_or_video=denoised_pred,
conditional_dict=conditional_dict,
timestep=context_timestep,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length,
updating_cache=True,
)
# Step 3.5: Return the denoised timestep
# can ignore since not used
denoised_timestep_from, denoised_timestep_to = None, None
return output, denoised_timestep_from, denoised_timestep_to
def inference_with_self_forcing(
self,
noise: torch.Tensor,
initial_latent: Optional[torch.Tensor] = None,
return_sim_step: bool = False,
**conditional_dict
) -> torch.Tensor:
batch_size, num_frames, num_channels, height, width = noise.shape
if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None):
# If the first frame is independent and the first frame is provided, then the number of frames in the
# noise should still be a multiple of num_frame_per_block
assert num_frames % self.num_frame_per_block == 0
num_blocks = num_frames // self.num_frame_per_block
else:
# Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning
assert (num_frames - 1) % self.num_frame_per_block == 0
num_blocks = (num_frames - 1) // self.num_frame_per_block
num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0
num_output_frames = num_frames + num_input_frames # add the initial latent frames
output = torch.zeros(
[batch_size, num_output_frames, num_channels, height, width],
device=noise.device,
dtype=noise.dtype
)
# Step 1: Initialize KV cache to all zeros
self._initialize_kv_cache(
batch_size=batch_size, dtype=noise.dtype, device=noise.device
)
self._initialize_crossattn_cache(
batch_size=batch_size, dtype=noise.dtype, device=noise.device
)
# if self.kv_cache_clean is None:
# self._initialize_kv_cache(
# batch_size=batch_size,
# dtype=noise.dtype,
# device=noise.device,
# )
# self._initialize_crossattn_cache(
# batch_size=batch_size,
# dtype=noise.dtype,
# device=noise.device
# )
# else:
# # reset cross attn cache
# for block_index in range(self.num_transformer_blocks):
# self.crossattn_cache[block_index]["is_init"] = False
# # reset kv cache
# for block_index in range(len(self.kv_cache_clean)):
# self.kv_cache_clean[block_index]["global_end_index"] = torch.tensor(
# [0], dtype=torch.long, device=noise.device)
# self.kv_cache_clean[block_index]["local_end_index"] = torch.tensor(
# [0], dtype=torch.long, device=noise.device)
# Step 2: Cache context feature
current_start_frame = 0
if initial_latent is not None:
timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0
# Assume num_input_frames is 1 + self.num_frame_per_block * num_input_blocks
output[:, :1] = initial_latent
with torch.no_grad():
self.generator(
noisy_image_or_video=initial_latent,
conditional_dict=conditional_dict,
timestep=timestep * 0,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
current_start_frame += 1
# Step 3: Temporal denoising loop
all_num_frames = [self.num_frame_per_block] * num_blocks
if self.independent_first_frame and initial_latent is None:
all_num_frames = [1] + all_num_frames
num_denoising_steps = len(self.denoising_step_list)
exit_flags = self.generate_and_sync_list(len(all_num_frames), num_denoising_steps, device=noise.device)
start_gradient_frame_index = num_output_frames - 21
# for block_index in range(num_blocks):
for block_index, current_num_frames in enumerate(all_num_frames):
noisy_input = noise[
:, current_start_frame - num_input_frames:current_start_frame + current_num_frames - num_input_frames]
# Step 3.1: Spatial denoising loop
for index, current_timestep in enumerate(self.denoising_step_list):
if self.same_step_across_blocks:
exit_flag = (index == exit_flags[0])
else:
exit_flag = (index == exit_flags[block_index]) # Only backprop at the randomly selected timestep (consistent across all ranks)
timestep = torch.ones(
[batch_size, current_num_frames],
device=noise.device,
dtype=torch.int64) * current_timestep
if not exit_flag:
with torch.no_grad():
_, denoised_pred = self.generator(
noisy_image_or_video=noisy_input,
conditional_dict=conditional_dict,
timestep=timestep,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
next_timestep = self.denoising_step_list[index + 1]
noisy_input = self.scheduler.add_noise(
denoised_pred.flatten(0, 1),
torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones(
[batch_size * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
else:
# for getting real output
# with torch.set_grad_enabled(current_start_frame >= start_gradient_frame_index):
if current_start_frame < start_gradient_frame_index:
with torch.no_grad():
_, denoised_pred = self.generator(
noisy_image_or_video=noisy_input,
conditional_dict=conditional_dict,
timestep=timestep,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
else:
_, denoised_pred = self.generator(
noisy_image_or_video=noisy_input,
conditional_dict=conditional_dict,
timestep=timestep,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
break
# Step 3.2: record the model's output
output[:, current_start_frame:current_start_frame + current_num_frames] = denoised_pred
# Step 3.3: rerun with timestep zero to update the cache
context_timestep = torch.ones_like(timestep) * self.context_noise
# add context noise
denoised_pred = self.scheduler.add_noise(
denoised_pred.flatten(0, 1),
torch.randn_like(denoised_pred.flatten(0, 1)),
context_timestep * torch.ones(
[batch_size * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
with torch.no_grad():
self.generator(
noisy_image_or_video=denoised_pred,
conditional_dict=conditional_dict,
timestep=context_timestep,
kv_cache=self.kv_cache_clean,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length,
updating_cache=True,
)
# Step 3.4: update the start and end frame indices
current_start_frame += current_num_frames
# Step 3.5: Return the denoised timestep
if not self.same_step_across_blocks:
denoised_timestep_from, denoised_timestep_to = None, None
elif exit_flags[0] == len(self.denoising_step_list) - 1:
denoised_timestep_to = 0
denoised_timestep_from = 1000 - torch.argmin(
(self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item()
else:
denoised_timestep_to = 1000 - torch.argmin(
(self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0] + 1].cuda()).abs(), dim=0).item()
denoised_timestep_from = 1000 - torch.argmin(
(self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item()
if return_sim_step:
return output, denoised_timestep_from, denoised_timestep_to, exit_flags[0] + 1
return output, denoised_timestep_from, denoised_timestep_to
def _initialize_kv_cache(self, batch_size, dtype, device):
"""
Initialize a Per-GPU KV cache for the Wan model.
"""
kv_cache_clean = []
for _ in range(self.num_transformer_blocks):
kv_cache_clean.append({
"k": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device),
"v": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device),
"global_end_index": torch.tensor([0], dtype=torch.long, device=device),
"local_end_index": torch.tensor([0], dtype=torch.long, device=device)
})
self.kv_cache_clean = kv_cache_clean # always store the clean cache
def _initialize_crossattn_cache(self, batch_size, dtype, device):
"""
Initialize a Per-GPU cross-attention cache for the Wan model.
"""
crossattn_cache = []
for _ in range(self.num_transformer_blocks):
crossattn_cache.append({
"k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
"v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
"is_init": False
})
self.crossattn_cache = crossattn_cache |