Spaces:
Running
on
Zero
Running
on
Zero
| from typing import List, Optional | |
| import torch | |
| from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper | |
| class CausalInferencePipeline(torch.nn.Module): | |
| def __init__( | |
| self, | |
| args, | |
| device, | |
| generator=None, | |
| text_encoder=None, | |
| vae=None | |
| ): | |
| super().__init__() | |
| # Step 1: Initialize all models | |
| self.generator = WanDiffusionWrapper( | |
| **getattr(args, "model_kwargs", {}), is_causal=True) if generator is None else generator | |
| self.text_encoder = WanTextEncoder() if text_encoder is None else text_encoder | |
| self.vae = WanVAEWrapper() if vae is None else vae | |
| # Step 2: Initialize all causal hyperparmeters | |
| self.scheduler = self.generator.get_scheduler() | |
| self.denoising_step_list = torch.tensor( | |
| args.denoising_step_list, dtype=torch.long) | |
| if args.warp_denoising_step: | |
| timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32))) | |
| self.denoising_step_list = timesteps[1000 - self.denoising_step_list] | |
| self.num_transformer_blocks = 30 | |
| self.frame_seq_length = 1560 | |
| self.kv_cache_clean = None | |
| self.args = args | |
| self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) | |
| self.independent_first_frame = args.independent_first_frame | |
| self.local_attn_size = self.generator.model.local_attn_size | |
| print(f"KV inference with {self.num_frame_per_block} frames per block") | |
| if self.num_frame_per_block > 1: | |
| self.generator.model.num_frame_per_block = self.num_frame_per_block | |
| def inference_rolling_forcing( | |
| self, | |
| noise: torch.Tensor, | |
| text_prompts: List[str], | |
| initial_latent: Optional[torch.Tensor] = None, | |
| return_latents: bool = False, | |
| profile: bool = False | |
| ) -> torch.Tensor: | |
| """ | |
| Perform inference on the given noise and text prompts. | |
| Inputs: | |
| noise (torch.Tensor): The input noise tensor of shape | |
| (batch_size, num_output_frames, num_channels, height, width). | |
| text_prompts (List[str]): The list of text prompts. | |
| initial_latent (torch.Tensor): The initial latent tensor of shape | |
| (batch_size, num_input_frames, num_channels, height, width). | |
| If num_input_frames is 1, perform image to video. | |
| If num_input_frames is greater than 1, perform video extension. | |
| return_latents (bool): Whether to return the latents. | |
| Outputs: | |
| video (torch.Tensor): The generated video tensor of shape | |
| (batch_size, num_output_frames, num_channels, height, width). | |
| It is normalized to be in the range [0, 1]. | |
| """ | |
| batch_size, num_frames, num_channels, height, width = noise.shape | |
| if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None): | |
| # If the first frame is independent and the first frame is provided, then the number of frames in the | |
| # noise should still be a multiple of num_frame_per_block | |
| assert num_frames % self.num_frame_per_block == 0 | |
| num_blocks = num_frames // self.num_frame_per_block | |
| else: | |
| # Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning | |
| assert (num_frames - 1) % self.num_frame_per_block == 0 | |
| num_blocks = (num_frames - 1) // self.num_frame_per_block | |
| num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0 | |
| num_output_frames = num_frames + num_input_frames # add the initial latent frames | |
| conditional_dict = self.text_encoder( | |
| text_prompts=text_prompts | |
| ) | |
| output = torch.zeros( | |
| [batch_size, num_output_frames, num_channels, height, width], | |
| device=noise.device, | |
| dtype=noise.dtype | |
| ) | |
| # Set up profiling if requested | |
| if profile: | |
| init_start = torch.cuda.Event(enable_timing=True) | |
| init_end = torch.cuda.Event(enable_timing=True) | |
| diffusion_start = torch.cuda.Event(enable_timing=True) | |
| diffusion_end = torch.cuda.Event(enable_timing=True) | |
| vae_start = torch.cuda.Event(enable_timing=True) | |
| vae_end = torch.cuda.Event(enable_timing=True) | |
| block_times = [] | |
| block_start = torch.cuda.Event(enable_timing=True) | |
| block_end = torch.cuda.Event(enable_timing=True) | |
| init_start.record() | |
| # Step 1: Initialize KV cache to all zeros | |
| if self.kv_cache_clean is None: | |
| self._initialize_kv_cache( | |
| batch_size=batch_size, | |
| dtype=noise.dtype, | |
| device=noise.device | |
| ) | |
| self._initialize_crossattn_cache( | |
| batch_size=batch_size, | |
| dtype=noise.dtype, | |
| device=noise.device | |
| ) | |
| else: | |
| # reset cross attn cache | |
| for block_index in range(self.num_transformer_blocks): | |
| self.crossattn_cache[block_index]["is_init"] = False | |
| # reset kv cache | |
| for block_index in range(len(self.kv_cache_clean)): | |
| self.kv_cache_clean[block_index]["global_end_index"] = torch.tensor( | |
| [0], dtype=torch.long, device=noise.device) | |
| self.kv_cache_clean[block_index]["local_end_index"] = torch.tensor( | |
| [0], dtype=torch.long, device=noise.device) | |
| # Step 2: Cache context feature | |
| if initial_latent is not None: | |
| timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0 | |
| if self.independent_first_frame: | |
| # Assume num_input_frames is 1 + self.num_frame_per_block * num_input_blocks | |
| assert (num_input_frames - 1) % self.num_frame_per_block == 0 | |
| num_input_blocks = (num_input_frames - 1) // self.num_frame_per_block | |
| output[:, :1] = initial_latent[:, :1] | |
| self.generator( | |
| noisy_image_or_video=initial_latent[:, :1], | |
| conditional_dict=conditional_dict, | |
| timestep=timestep * 0, | |
| kv_cache=self.kv_cache_clean, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length, | |
| ) | |
| current_start_frame += 1 | |
| else: | |
| # Assume num_input_frames is self.num_frame_per_block * num_input_blocks | |
| assert num_input_frames % self.num_frame_per_block == 0 | |
| num_input_blocks = num_input_frames // self.num_frame_per_block | |
| for _ in range(num_input_blocks): | |
| current_ref_latents = \ | |
| initial_latent[:, current_start_frame:current_start_frame + self.num_frame_per_block] | |
| output[:, current_start_frame:current_start_frame + self.num_frame_per_block] = current_ref_latents | |
| self.generator( | |
| noisy_image_or_video=current_ref_latents, | |
| conditional_dict=conditional_dict, | |
| timestep=timestep * 0, | |
| kv_cache=self.kv_cache_clean, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length, | |
| ) | |
| current_start_frame += self.num_frame_per_block | |
| if profile: | |
| init_end.record() | |
| torch.cuda.synchronize() | |
| diffusion_start.record() | |
| # implementing rolling forcing | |
| # construct the rolling forcing windows | |
| num_denoising_steps = len(self.denoising_step_list) | |
| rolling_window_length_blocks = num_denoising_steps | |
| window_start_blocks = [] | |
| window_end_blocks = [] | |
| window_num = num_blocks + rolling_window_length_blocks - 1 | |
| for window_index in range(window_num): | |
| start_block = max(0, window_index - rolling_window_length_blocks + 1) | |
| end_block = min(num_blocks - 1, window_index) | |
| window_start_blocks.append(start_block) | |
| window_end_blocks.append(end_block) | |
| # init noisy cache | |
| noisy_cache = torch.zeros( | |
| [batch_size, num_output_frames, num_channels, height, width], | |
| device=noise.device, | |
| dtype=noise.dtype | |
| ) | |
| # init denosing timestep, same accross windows | |
| shared_timestep = torch.ones( | |
| [batch_size, rolling_window_length_blocks * self.num_frame_per_block], | |
| device=noise.device, | |
| dtype=torch.float32) | |
| for index, current_timestep in enumerate(reversed(self.denoising_step_list)): # from clean to noisy | |
| shared_timestep[:, index * self.num_frame_per_block:(index + 1) * self.num_frame_per_block] *= current_timestep | |
| # Denoising loop with rolling forcing | |
| for window_index in range(window_num): | |
| if profile: | |
| block_start.record() | |
| print('window_index:', window_index) | |
| start_block = window_start_blocks[window_index] | |
| end_block = window_end_blocks[window_index] # include | |
| print(f"start_block: {start_block}, end_block: {end_block}") | |
| current_start_frame = start_block * self.num_frame_per_block | |
| current_end_frame = (end_block + 1) * self.num_frame_per_block # not include | |
| current_num_frames = current_end_frame - current_start_frame | |
| # noisy_input: new noise and previous denoised noisy frames, only last block is pure noise | |
| if current_num_frames == rolling_window_length_blocks * self.num_frame_per_block or current_start_frame == 0: | |
| noisy_input = torch.cat([ | |
| noisy_cache[:, current_start_frame : current_end_frame - self.num_frame_per_block], | |
| noise[:, current_end_frame - self.num_frame_per_block : current_end_frame ] | |
| ], dim=1) | |
| else: # at the end of the video | |
| noisy_input = noisy_cache[:, current_start_frame:current_end_frame] | |
| # init denosing timestep | |
| if current_num_frames == rolling_window_length_blocks * self.num_frame_per_block: | |
| current_timestep = shared_timestep | |
| elif current_start_frame == 0: | |
| current_timestep = shared_timestep[:,-current_num_frames:] | |
| elif current_end_frame == num_frames: | |
| current_timestep = shared_timestep[:,:current_num_frames] | |
| else: | |
| raise ValueError("current_num_frames should be equal to rolling_window_length_blocks * self.num_frame_per_block, or the first or last window.") | |
| # calling DiT | |
| _, denoised_pred = self.generator( | |
| noisy_image_or_video=noisy_input, | |
| conditional_dict=conditional_dict, | |
| timestep=current_timestep, | |
| kv_cache=self.kv_cache_clean, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length | |
| ) | |
| output[:, current_start_frame:current_end_frame] = denoised_pred | |
| # update noisy_cache, which is detached from the computation graph | |
| with torch.no_grad(): | |
| for block_idx in range(start_block, end_block + 1): | |
| block_time_step = current_timestep[:, | |
| (block_idx - start_block)*self.num_frame_per_block : | |
| (block_idx - start_block+1)*self.num_frame_per_block].mean().item() | |
| matches = torch.abs(self.denoising_step_list - block_time_step) < 1e-4 | |
| block_timestep_index = torch.nonzero(matches, as_tuple=True)[0] | |
| if block_timestep_index == len(self.denoising_step_list) - 1: | |
| continue | |
| next_timestep = self.denoising_step_list[block_timestep_index + 1].to(noise.device) | |
| noisy_cache[:, block_idx * self.num_frame_per_block: | |
| (block_idx+1) * self.num_frame_per_block] = \ | |
| self.scheduler.add_noise( | |
| denoised_pred.flatten(0, 1), | |
| torch.randn_like(denoised_pred.flatten(0, 1)), | |
| next_timestep * torch.ones( | |
| [batch_size * current_num_frames], device=noise.device, dtype=torch.long) | |
| ).unflatten(0, denoised_pred.shape[:2])[:, (block_idx - start_block)*self.num_frame_per_block: | |
| (block_idx - start_block+1)*self.num_frame_per_block] | |
| # rerun with timestep zero to update the clean cache, which is also detached from the computation graph | |
| with torch.no_grad(): | |
| context_timestep = torch.ones_like(current_timestep) * self.args.context_noise | |
| # # add context noise | |
| # denoised_pred = self.scheduler.add_noise( | |
| # denoised_pred.flatten(0, 1), | |
| # torch.randn_like(denoised_pred.flatten(0, 1)), | |
| # context_timestep * torch.ones( | |
| # [batch_size * current_num_frames], device=noise.device, dtype=torch.long) | |
| # ).unflatten(0, denoised_pred.shape[:2]) | |
| # only cache the first block | |
| denoised_pred = denoised_pred[:,:self.num_frame_per_block] | |
| context_timestep = context_timestep[:,:self.num_frame_per_block] | |
| self.generator( | |
| noisy_image_or_video=denoised_pred, | |
| conditional_dict=conditional_dict, | |
| timestep=context_timestep, | |
| kv_cache=self.kv_cache_clean, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length, | |
| updating_cache=True, | |
| ) | |
| if profile: | |
| block_end.record() | |
| torch.cuda.synchronize() | |
| block_time = block_start.elapsed_time(block_end) | |
| block_times.append(block_time) | |
| if profile: | |
| # End diffusion timing and synchronize CUDA | |
| diffusion_end.record() | |
| torch.cuda.synchronize() | |
| diffusion_time = diffusion_start.elapsed_time(diffusion_end) | |
| init_time = init_start.elapsed_time(init_end) | |
| vae_start.record() | |
| # Step 4: Decode the output | |
| video = self.vae.decode_to_pixel(output, use_cache=False) | |
| video = (video * 0.5 + 0.5).clamp(0, 1) | |
| if profile: | |
| # End VAE timing and synchronize CUDA | |
| vae_end.record() | |
| torch.cuda.synchronize() | |
| vae_time = vae_start.elapsed_time(vae_end) | |
| total_time = init_time + diffusion_time + vae_time | |
| print("Profiling results:") | |
| print(f" - Initialization/caching time: {init_time:.2f} ms ({100 * init_time / total_time:.2f}%)") | |
| print(f" - Diffusion generation time: {diffusion_time:.2f} ms ({100 * diffusion_time / total_time:.2f}%)") | |
| for i, block_time in enumerate(block_times): | |
| print(f" - Block {i} generation time: {block_time:.2f} ms ({100 * block_time / diffusion_time:.2f}% of diffusion)") | |
| print(f" - VAE decoding time: {vae_time:.2f} ms ({100 * vae_time / total_time:.2f}%)") | |
| print(f" - Total time: {total_time:.2f} ms") | |
| if return_latents: | |
| return video, output | |
| else: | |
| return video | |
| def _initialize_kv_cache(self, batch_size, dtype, device): | |
| """ | |
| Initialize a Per-GPU KV cache for the Wan model. | |
| """ | |
| kv_cache_clean = [] | |
| # if self.local_attn_size != -1: | |
| # # Use the local attention size to compute the KV cache size | |
| # kv_cache_size = self.local_attn_size * self.frame_seq_length | |
| # else: | |
| # # Use the default KV cache size | |
| kv_cache_size = 1560 * 24 | |
| for _ in range(self.num_transformer_blocks): | |
| kv_cache_clean.append({ | |
| "k": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device), | |
| "v": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device), | |
| "global_end_index": torch.tensor([0], dtype=torch.long, device=device), | |
| "local_end_index": torch.tensor([0], dtype=torch.long, device=device) | |
| }) | |
| self.kv_cache_clean = kv_cache_clean # always store the clean cache | |
| def _initialize_crossattn_cache(self, batch_size, dtype, device): | |
| """ | |
| Initialize a Per-GPU cross-attention cache for the Wan model. | |
| """ | |
| crossattn_cache = [] | |
| for _ in range(self.num_transformer_blocks): | |
| crossattn_cache.append({ | |
| "k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device), | |
| "v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device), | |
| "is_init": False | |
| }) | |
| self.crossattn_cache = crossattn_cache |