Spaces:
Runtime error
Runtime error
Commit
·
de47a16
1
Parent(s):
a242148
v1_Added application file
Browse files- .gitattributes +1 -1
- app.py +114 -0
- packages.txt +6 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
|
@@ -20,7 +21,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 20 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 22 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 21 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import AutoModelForTokenClassification
|
| 7 |
+
from datasets.features import ClassLabel
|
| 8 |
+
from transformers import AutoProcessor
|
| 9 |
+
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
|
| 10 |
+
import torch
|
| 11 |
+
from datasets import load_metric
|
| 12 |
+
from transformers import LayoutLMv3ForTokenClassification
|
| 13 |
+
from transformers.data.data_collator import default_data_collator
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from transformers import AutoModelForTokenClassification
|
| 17 |
+
from datasets import load_dataset
|
| 18 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
|
| 22 |
+
model = AutoModelForTokenClassification.from_pretrained("layoutlmv3-finetuned-invoice")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# load image example
|
| 27 |
+
dataset = load_dataset("darentang/generated", split="test")
|
| 28 |
+
Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png")
|
| 29 |
+
Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
|
| 30 |
+
Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")
|
| 31 |
+
# define id2label, label2color
|
| 32 |
+
labels = dataset.features['ner_tags'].feature.names
|
| 33 |
+
id2label = {v: k for v, k in enumerate(labels)}
|
| 34 |
+
label2color = {
|
| 35 |
+
"B-ABN": 'blue',
|
| 36 |
+
"B-BILLER": 'blue',
|
| 37 |
+
"B-BILLER_ADDRESS": 'green',
|
| 38 |
+
"B-BILLER_POST_CODE": 'orange',
|
| 39 |
+
"B-DUE_DATE": "blue",
|
| 40 |
+
"B-GST": 'green',
|
| 41 |
+
"B-INVOICE_DATE": 'violet',
|
| 42 |
+
"B-INVOICE_NUMBER": 'orange',
|
| 43 |
+
"B-SUBTOTAL": 'green',
|
| 44 |
+
"B-TOTAL": 'blue',
|
| 45 |
+
"I-BILLER_ADDRESS": 'blue',
|
| 46 |
+
"O": 'orange'
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
def unnormalize_box(bbox, width, height):
|
| 50 |
+
return [
|
| 51 |
+
width * (bbox[0] / 1000),
|
| 52 |
+
height * (bbox[1] / 1000),
|
| 53 |
+
width * (bbox[2] / 1000),
|
| 54 |
+
height * (bbox[3] / 1000),
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def iob_to_label(label):
|
| 59 |
+
return label
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def process_image(image):
|
| 64 |
+
|
| 65 |
+
print(type(image))
|
| 66 |
+
width, height = image.size
|
| 67 |
+
|
| 68 |
+
# encode
|
| 69 |
+
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
| 70 |
+
offset_mapping = encoding.pop('offset_mapping')
|
| 71 |
+
|
| 72 |
+
# forward pass
|
| 73 |
+
outputs = model(**encoding)
|
| 74 |
+
|
| 75 |
+
# get predictions
|
| 76 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
| 77 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
| 78 |
+
|
| 79 |
+
# only keep non-subword predictions
|
| 80 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
| 81 |
+
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
| 82 |
+
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
| 83 |
+
|
| 84 |
+
# draw predictions over the image
|
| 85 |
+
draw = ImageDraw.Draw(image)
|
| 86 |
+
font = ImageFont.load_default()
|
| 87 |
+
for prediction, box in zip(true_predictions, true_boxes):
|
| 88 |
+
predicted_label = iob_to_label(prediction)
|
| 89 |
+
draw.rectangle(box, outline=label2color[predicted_label])
|
| 90 |
+
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
|
| 91 |
+
|
| 92 |
+
return image
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
title = "Invoice Information extraction using LayoutLMv3 model"
|
| 96 |
+
description = "Invoice Information Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
| 97 |
+
|
| 98 |
+
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
|
| 99 |
+
|
| 100 |
+
examples =[['example1.png'],['example2.png'],['example3.png']]
|
| 101 |
+
|
| 102 |
+
css = """.output_image, .input_image {height: 600px !important}"""
|
| 103 |
+
|
| 104 |
+
iface = gr.Interface(fn=process_image,
|
| 105 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 106 |
+
outputs=gr.outputs.Image(type="pil", label="annotated image"),
|
| 107 |
+
title=title,
|
| 108 |
+
description=description,
|
| 109 |
+
article=article,
|
| 110 |
+
examples=examples,
|
| 111 |
+
css=css,
|
| 112 |
+
analytics_enabled = True, enable_queue=True)
|
| 113 |
+
|
| 114 |
+
iface.launch(inline=False, share=True, debug=True)
|
packages.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
libsm6
|
| 3 |
+
libxext6 -y
|
| 4 |
+
libgl1
|
| 5 |
+
-y libgl1-mesa-glx
|
| 6 |
+
tesseract-ocr
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers.git
|
| 2 |
+
PyYAML==6.0
|
| 3 |
+
pytesseract==0.3.9
|
| 4 |
+
datasets==2.2.2
|
| 5 |
+
seqeval==1.2.2
|