Spaces:
Running
Running
Update src/paraphrase/Paraphrase.py
Browse files- src/paraphrase/Paraphrase.py +7 -15
src/paraphrase/Paraphrase.py
CHANGED
|
@@ -1,15 +1,11 @@
|
|
| 1 |
-
from
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
import torch
|
| 4 |
import src.exception.Exception.Exception as ExceptionCustom
|
| 5 |
|
| 6 |
METHOD = "PARAPHRASE"
|
| 7 |
|
| 8 |
-
tokenizer =
|
| 9 |
-
model =
|
| 10 |
-
|
| 11 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
-
# model.to(device)
|
| 13 |
|
| 14 |
def paraphraseParaphraseMethod(requestValue : str):
|
| 15 |
exception = ""
|
|
@@ -24,20 +20,16 @@ def paraphraseParaphraseMethod(requestValue : str):
|
|
| 24 |
for SENTENCE in tokenized_sent_list:
|
| 25 |
text = "paraphrase: " + SENTENCE
|
| 26 |
|
| 27 |
-
encoding = tokenizer
|
| 28 |
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
| 29 |
|
| 30 |
beam_outputs = model.generate(
|
| 31 |
input_ids=input_ids,
|
| 32 |
attention_mask=attention_masks,
|
| 33 |
-
do_sample=True,
|
| 34 |
max_length=512,
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
early_stopping=
|
| 38 |
-
num_return_sequences=1,
|
| 39 |
-
no_repeat_ngram_size=2,
|
| 40 |
-
num_beams=1
|
| 41 |
)
|
| 42 |
|
| 43 |
for beam_output in beam_outputs:
|
|
|
|
| 1 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
|
|
|
| 2 |
import torch
|
| 3 |
import src.exception.Exception.Exception as ExceptionCustom
|
| 4 |
|
| 5 |
METHOD = "PARAPHRASE"
|
| 6 |
|
| 7 |
+
tokenizer = PegasusTokenizer.from_pretrained('google/pegasus-xsum')
|
| 8 |
+
model = PegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum')
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def paraphraseParaphraseMethod(requestValue : str):
|
| 11 |
exception = ""
|
|
|
|
| 20 |
for SENTENCE in tokenized_sent_list:
|
| 21 |
text = "paraphrase: " + SENTENCE
|
| 22 |
|
| 23 |
+
encoding = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 24 |
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
| 25 |
|
| 26 |
beam_outputs = model.generate(
|
| 27 |
input_ids=input_ids,
|
| 28 |
attention_mask=attention_masks,
|
|
|
|
| 29 |
max_length=512,
|
| 30 |
+
num_beams=5,
|
| 31 |
+
length_penalty=0.8,
|
| 32 |
+
early_stopping=True
|
|
|
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
|
| 35 |
for beam_output in beam_outputs:
|