Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
|
| 4 |
+
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
| 5 |
+
langs = {"English": "en", "Romanian": "ro", "German": "de", "French": "fr", "Spanish": "es"}
|
| 6 |
+
sl = langs[sselected_language]
|
| 7 |
+
tl = langs[tselected_language]
|
| 8 |
+
|
| 9 |
+
if model_name == "Helsinki-NLP":
|
| 10 |
+
try:
|
| 11 |
+
model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
| 13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
| 14 |
+
except EnvironmentError:
|
| 15 |
+
model_name_full = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
| 17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
| 18 |
+
else:
|
| 19 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 20 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 21 |
+
|
| 22 |
+
if model_name.startswith("Helsinki-NLP"):
|
| 23 |
+
prompt = input_text
|
| 24 |
+
else:
|
| 25 |
+
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
|
| 26 |
+
|
| 27 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 28 |
+
output_ids = model.generate(input_ids)
|
| 29 |
+
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 30 |
+
|
| 31 |
+
return translated_text
|
| 32 |
+
|
| 33 |
+
options = ["German", "Romanian", "English", "French", "Spanish"]
|
| 34 |
+
models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large"]
|
| 35 |
+
|
| 36 |
+
def create_interface():
|
| 37 |
+
with gr.Blocks() as interface:
|
| 38 |
+
gr.Markdown("## Text Machine Translation")
|
| 39 |
+
|
| 40 |
+
with gr.Row():
|
| 41 |
+
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...")
|
| 42 |
+
|
| 43 |
+
with gr.Row():
|
| 44 |
+
sselected_language = gr.Dropdown(choices=options, value="English", label="Source language")
|
| 45 |
+
tselected_language = gr.Dropdown(choices=options, value="German", label="Target language")
|
| 46 |
+
|
| 47 |
+
model_name = gr.Dropdown(choices=models, value="Helsinki-NLP", label="Select a model")
|
| 48 |
+
translate_button = gr.Button("Translate")
|
| 49 |
+
|
| 50 |
+
translated_text = gr.Textbox(label="Translated text:", interactive=False)
|
| 51 |
+
|
| 52 |
+
translate_button.click(
|
| 53 |
+
translate_text,
|
| 54 |
+
inputs=[input_text, sselected_language, tselected_language, model_name],
|
| 55 |
+
outputs=translated_text
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
return interface
|
| 59 |
+
|
| 60 |
+
# Launch the Gradio interface
|
| 61 |
+
interface = create_interface()
|
| 62 |
+
interface.launch()
|