Spaces:
Sleeping
Sleeping
| # pip install transformers | |
| from transformers import pipeline | |
| import gradio as gr | |
| model = pipeline(model="openai/whisper-base") | |
| en_jp_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-jap") | |
| # "automatic-speech-recognition" | |
| # transcriber = pipeline(model="openai/whisper-base") | |
| # transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac") | |
| def transcribe_audio(mic=None, file=None): | |
| if mic is not None: | |
| audio = mic | |
| elif file is not None: | |
| audio = file | |
| else: | |
| return "You must either provide a mic recording or a file" | |
| transcription = model(audio)["text"] | |
| return transcription | |
| def translate_text(transcription): | |
| return en_jp_translator(transcription)[0]["translation_text"] | |
| def combined_function(b): | |
| transcribe_audio(inputs=audio_file, outputs=text) | |
| translate_text(inputs=text, outputs=translate) | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown( | |
| """ | |
| # 英語音声を翻訳 | |
| """) | |
| # title="英語音声を翻訳" | |
| audio_file = gr.Audio(type="filepath") | |
| text = gr.Textbox() | |
| translate = gr.Textbox() | |
| # b1 = gr.Button("Recognize Speech & Translate") | |
| b1 = gr.Button("Recognize Speech") | |
| b2 = gr.Button("Translate") | |
| # b1.click(combined_function) | |
| b1.click(transcribe_audio, inputs=audio_file, outputs=text) | |
| b2.click(translate_text, inputs=text, outputs= translate) | |
| demo.launch() |