Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import re | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | |
| import torch | |
| import json | |
| title = "# ๐๐ปโโ๏ธWelcome to ๐Tonic's ๐๐๐จ๐ปโ๐ฌMoonshot Math" | |
| description = """ | |
| **๐๐๐จ๐ปโ๐ฌAI-MO/Kimina-Prover-Distill-8B** is a theorem proving model developed by Project Numina and Kimi teams, focusing on competition style problem solving capabilities in Lean 4. It is a distillation of AI-MO/Kimina-Prover-72B, a model trained via large scale reinforcement learning. It achieves 77.86% accuracy with Pass@32 on MiniF2F-test.\ | |
| - [Kimina-Prover-Preview GitHub](https://github.com/MoonshotAI/Kimina-Prover-Preview)\ | |
| - [Hugging Face: AI-MO/Kimina-Prover-72B](https://huggingface.co/AI-MO/Kimina-Prover-72B)\ | |
| - [Kimina Prover blog](https://huggingface.co/blog/AI-MO/kimina-prover)\ | |
| - [unimath dataset](https://huggingface.co/datasets/introspector/unimath)\ | |
| """ | |
| citation = """> **Citation:** | |
| > ``` | |
| > @article{kimina_prover_2025, | |
| > title = {Kimina-Prover Preview: Towards Large Formal Reasoning Models with Reinforcement Learning}, | |
| > author = {Wang, Haiming and Unsal, Mert and ...}, | |
| > year = {2025}, | |
| > url = {http://arxiv.org/abs/2504.11354}, | |
| > } | |
| > ``` | |
| """ | |
| joinus = """ | |
| ## Join us : | |
| ๐TeamTonic๐ is always making cool demos! Join our active builder's ๐ ๏ธcommunity ๐ป [](https://discord.gg/qdfnvSPcqP) On ๐คHuggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On ๐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to๐ [MultiTonic](https://github.com/MultiTonic)๐คBig thanks to Yuvi Sharma and all the folks at huggingface for the community grant ๐ค | |
| """ | |
| SYSTEM_PROMPT = "You are an expert in mathematics and Lean 4." | |
| LEAN4_DEFAULT_HEADER = ( | |
| "import Mathlib\n" | |
| "import Aesop\n\n" | |
| "set_option maxHeartbeats 0\n\n" | |
| "open BigOperators Real Nat Topology Rat\n" | |
| ) | |
| unimath1 = """Goal: | |
| X : UU | |
| Y : UU | |
| P : UU | |
| xp : (X โ P) โ P | |
| yp : (Y โ P) โ P | |
| X0 : X ร Y โ P | |
| x : X | |
| ============================ | |
| (Y โ P)""" | |
| unimath2 = """Goal: | |
| R : ring M : module R | |
| ============================ | |
| (islinear (idfun M))""" | |
| unimath3 = """Goal: | |
| X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i | |
| ============================ | |
| (pr1 lastelement = pr1 (i,, b))""" | |
| unimath4 = """Goal: | |
| X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X | |
| ============================ | |
| (x โ y โ (โ i : approximating_family CX x, approximating_family CX x i โ y))""" | |
| additional_info_prompt = "/-Explain using mathematics-/\n" | |
| def build_formal_block(formal_statement, informal_prefix=""): | |
| return ( | |
| f"{LEAN4_DEFAULT_HEADER}\n" | |
| f"{informal_prefix}\n" | |
| f"{formal_statement}" | |
| ) | |
| def extract_lean4_code(text): | |
| code_block = re.search(r"```lean4(.*?)(```|$)", text, re.DOTALL) | |
| if code_block: | |
| code = code_block.group(1) | |
| lines = [line for line in code.split('\n') if line.strip()] | |
| return '\n'.join(lines) | |
| return text.strip() | |
| examples = [ | |
| [unimath1, additional_info_prompt, 1234], | |
| [unimath2, additional_info_prompt, 1234], | |
| [unimath3, additional_info_prompt, 1234], | |
| [unimath4, additional_info_prompt, 1234], | |
| [ | |
| '''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- Let $a_1, a_2,\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$-/\ntheorem imo_1969_p2 (m n : \\R) (k : \\N) (a : \\N \\rightarrow \\R) (y : \\R \\rightarrow \\R) (hโ : 0 < k)\n(hโ : \\forall x, y x = \\sum i in Finset.range k, Real.cos (a i + x) / 2 ^ i) (hโ : y m = 0)\n(hโ : y n = 0) : \\exists t : \\Z, m - n = t * Real.pi := by''', | |
| "/-- Let $a_1, a_2,\\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$-/", | |
| 2500 | |
| ], | |
| [ | |
| '''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- Suppose that $h(x)=f^{-1}(x)$. If $h(2)=10$, $h(10)=1$ and $h(1)=2$, what is $f(f(10))$? Show that it is 1.-/\ntheorem mathd_algebra_209 (ฯ : Equiv \\R \\R) (hโ : ฯ.2 2 = 10) (hโ : ฯ.2 10 = 1) (hโ : ฯ.2 1 = 2) :\nฯ.1 (ฯ.1 10) = 1 := by''', | |
| "/-- Suppose that $h(x)=f^{-1}(x)$. If $h(2)=10$, $h(10)=1$ and $h(1)=2$, what is $f(f(10))$? Show that it is 1.-/", | |
| 2500 | |
| ], | |
| [ | |
| '''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- At which point do the lines $s=9-2t$ and $t=3s+1$ intersect? Give your answer as an ordered pair in the form $(s, t).$ Show that it is (1,4).-//\ntheorem mathd_algebra_44 (s t : \\R) (hโ : s = 9 - 2 * t) (hโ : t = 3 * s + 1) : s = 1 \\wedge t = 4 := by''', | |
| "/-- At which point do the lines $s=9-2t$ and $t=3s+1$ intersect? Give your answer as an ordered pair in the form $(s, t).$ Show that it is (1,4).-/", | |
| 2500 | |
| ], | |
| ] | |
| model_name = "AI-MO/Kimina-Prover-Distill-8B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) | |
| model.generation_config = GenerationConfig.from_pretrained(model_name) | |
| if isinstance(model.generation_config.eos_token_id, list): | |
| model.generation_config.pad_token_id = model.generation_config.eos_token_id[0] | |
| else: | |
| model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
| model.generation_config.do_sample = True | |
| model.generation_config.temperature = 0.6 | |
| model.generation_config.top_p = 0.95 | |
| def init_chat(formal_statement, informal_prefix): | |
| user_prompt = ( | |
| "Think about and solve the following problem step by step in Lean 4.\n" | |
| "# Problem: Provide a formal proof for the following statement.\n" | |
| f"# Formal statement:\n```lean4\n{build_formal_block(formal_statement, informal_prefix)}\n```\n" | |
| ) | |
| return [ | |
| {"role": "system", "content": SYSTEM_PROMPT}, | |
| {"role": "user", "content": user_prompt} | |
| ] | |
| def chat_handler( | |
| user_message: str, | |
| informal_prefix: str = "/-Explain using mathematics-/\n", | |
| max_tokens: int = 2500, | |
| chat_history: list = None | |
| ): | |
| """ | |
| Handles a single chat interaction with the Kimina Prover model designed for competition-style problem solving it is capable of both formal and informal mathematical reasoning and problem solving. | |
| Args: | |
| user_message (str): The user's input message or formal statement to be solved or discussed by the model. This can be a Lean 4 goal, theorem, or mathematical problem statement. | |
| informal_prefix (str, optional): An optional informal explanation or context to prepend to the formal statement. Defaults to '/-Explain using mathematics-/\n'. | |
| max_tokens (int, optional): The maximum number of tokens to generate in the model's response. Must be between 150 and 4096. Defaults to 2500. | |
| chat_history (list, optional): The conversation history as a list of message dicts, each with 'role' and 'content'. Used to maintain context across turns. Defaults to None. | |
| Returns: | |
| tuple: ( | |
| display_history (list of tuples): List of (role, content) pairs for display in the chat UI. | |
| output_data_json (str): JSON string containing model input, output, extracted Lean4 code, and updated chat history. | |
| code (str): Extracted Lean4 code from the model's response, if present. | |
| chat_history (list): Updated chat history including the latest user and assistant messages. | |
| ) | |
| Example: | |
| >>> user_message = "Goal:\n X : UU\n Y : UU\n P : UU\n xp : (X โ P) โ P\n yp : (Y โ P) โ P\n X0 : X ร Y โ P\n x : X\n ============================\n (Y โ P)" | |
| >>> informal_prefix = "/-Explain using mathematics-/\n" | |
| >>> max_tokens = 1234 | |
| >>> chat_history = None | |
| >>> display_history, output_data_json, code, chat_history = chat_handler(user_message, informal_prefix, max_tokens, chat_history) | |
| # display_history contains the chat turns, output_data_json contains the full model output, code contains extracted Lean4 code. | |
| """ | |
| if not chat_history or len(chat_history) < 2: | |
| chat_history = init_chat(user_message, informal_prefix) | |
| display_history = [("user", user_message)] | |
| else: | |
| chat_history.append({"role": "user", "content": user_message}) | |
| display_history = [] | |
| for msg in chat_history: | |
| if msg["role"] == "user": | |
| display_history.append(("user", msg["content"])) | |
| elif msg["role"] == "assistant": | |
| display_history.append(("assistant", msg["content"])) | |
| prompt = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True) | |
| input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
| attention_mask = torch.ones_like(input_ids) | |
| outputs = model.generate( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| max_length=max_tokens + input_ids.shape[1], | |
| pad_token_id=model.generation_config.pad_token_id, | |
| temperature=model.generation_config.temperature, | |
| top_p=model.generation_config.top_p, | |
| ) | |
| result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| new_response = result[len(prompt):].strip() | |
| chat_history.append({"role": "assistant", "content": new_response}) | |
| display_history.append(("assistant", new_response)) | |
| code = extract_lean4_code(new_response) | |
| output_data = { | |
| "model_input": prompt, | |
| "model_output": result, | |
| "lean4_code": code, | |
| "chat_history": chat_history | |
| } | |
| return display_history, json.dumps(output_data, indent=2), code, chat_history | |
| def main(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("""# ๐๐ปโโ๏ธWelcome to ๐Tonic's ๐๐๐จ๐ปโ๐ฌMoonshot Math""") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown(description) | |
| with gr.Column(): | |
| gr.Markdown(joinus) | |
| with gr.Row(): | |
| with gr.Column(): | |
| user_input = gr.Textbox(label="๐จ๐ปโ๐ปYour message or formal statement", lines=4) | |
| informal = gr.Textbox(value=additional_info_prompt, label="๐๐ปโโ๏ธOptional informal prefix") | |
| max_tokens = gr.Slider(minimum=150, maximum=4096, value=2500, label="๐ชMax Tokens") | |
| submit = gr.Button("Send") | |
| with gr.Column(): | |
| chat = gr.Chatbot(label="๐๐๐จ๐ปโ๐ฌKimina Prover 8B") | |
| with gr.Accordion("Complete Output", open=False): | |
| json_out = gr.JSON(label="Full Output") | |
| code_out = gr.Code(label="Extracted Lean4 Code", language="python") | |
| state = gr.State([]) | |
| submit.click(chat_handler, [user_input, informal, max_tokens, state], [chat, json_out, code_out, state]) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[user_input, informal, max_tokens], | |
| label="๐คฆ๐ปโโ๏ธExample Problems" | |
| ) | |
| gr.Markdown(citation) | |
| demo.launch(ssr_mode=False, mcp_server=True) | |
| if __name__ == "__main__": | |
| main() | |