Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,717 Bytes
19b19f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import re
import json
from typing import List, Dict, Any, Optional
import logging
import spaces
import os
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration
MAIN_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft" # Main repo for config and chat template
INT4_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft/int4" # Int4 quantized model
LOCAL_MODEL_PATH = "./int4" # Local int4 weights
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Global variables for model and tokenizer
model = None
tokenizer = None
# Default system prompt
DEFAULT_SYSTEM_PROMPT = "Tu es TonicIA, un assistant francophone rigoureux et bienveillant."
# Title and description content
title = "# π€ Petite Elle L'Aime 3 - Chat Interface"
description = "A fine-tuned version of SmolLM3-3B optimized for French and multilingual conversations. This is the int4 quantized version for efficient CPU deployment."
presentation1 = """
### π― Features
- **Multilingual Support**: English, French, Italian, Portuguese, Chinese, Arabic
- **Int4 Quantization**: Optimized for CPU deployment with ~50% memory reduction
- **Interactive Chat Interface**: Real-time conversation with the model
- **Customizable System Prompt**: Define the assistant's personality and behavior
- **Thinking Mode**: Enable reasoning mode with thinking tags
"""
presentation2 = """
### π Model Information
- **Base Model**: SmolLM3-3B
- **Parameters**: ~3B
- **Context Length**: 128k
- **Languages**: English, French, Italian, Portuguese, Chinese, Arabic
- **Device**: CPU optimized
- **Quantization**: int4
"""
joinus = """
### π Quick Start
1. Add context in the system prompt
2. Type your message
3. Click generate to start chatting
4. Use advanced settings for fine-tuning
"""
def check_local_model():
"""Check if local int4 model files exist"""
required_files = [
"config.json",
"pytorch_model.bin",
"tokenizer.json",
"tokenizer_config.json"
]
for file in required_files:
file_path = os.path.join(LOCAL_MODEL_PATH, file)
if not os.path.exists(file_path):
logger.warning(f"Missing required file: {file_path}")
return False
logger.info("All required model files found locally")
return True
def load_model():
"""Load the model and tokenizer"""
global model, tokenizer
try:
# Check if local model exists (downloaded during build)
if check_local_model():
logger.info(f"Loading tokenizer from {LOCAL_MODEL_PATH}")
tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_PATH)
logger.info(f"Loading int4 model from {LOCAL_MODEL_PATH}")
model = AutoModelForCausalLM.from_pretrained(
LOCAL_MODEL_PATH,
device_map="auto" if DEVICE == "cuda" else "cpu",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
else:
logger.info(f"Local model not found, loading from {MAIN_MODEL_ID}")
# Load tokenizer from main repo (for chat template and config)
tokenizer = AutoTokenizer.from_pretrained(MAIN_MODEL_ID)
logger.info(f"Loading int4 model from {INT4_MODEL_ID}")
# Load model with int4 quantization from Hugging Face
model = AutoModelForCausalLM.from_pretrained(
INT4_MODEL_ID,
device_map="auto" if DEVICE == "cuda" else "cpu",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# Set pad token if not present
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info("Model loaded successfully")
return True
except Exception as e:
logger.error(f"Error loading model: {e}")
return False
def create_prompt(system_message, user_message, enable_thinking=True):
"""Create prompt using the model's chat template"""
try:
# Prepare messages for the template
formatted_messages = []
# Add system message if provided
if system_message and system_message.strip():
formatted_messages.append({"role": "system", "content": system_message})
# Add user message
formatted_messages.append({"role": "user", "content": user_message})
# Apply the chat template
prompt = tokenizer.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=enable_thinking
)
# Add /no_think to the end of prompt when thinking is disabled
if not enable_thinking:
prompt += " /no_think"
return prompt
except Exception as e:
logger.error(f"Error creating prompt: {e}")
return ""
@spaces.GPU(duration=94)
def generate_response(message, history, system_message, max_tokens, temperature, top_p, do_sample, enable_thinking=True):
"""Generate response using the model"""
global model, tokenizer
if model is None or tokenizer is None:
return "Error: Model not loaded. Please wait for the model to load."
try:
# Create prompt using chat template
full_prompt = create_prompt(system_message, message, enable_thinking)
if not full_prompt:
return "Error: Failed to create prompt."
# Tokenize the input
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True)
# Move to device
if DEVICE == "cuda":
inputs = {k: v.cuda() for k, v in inputs.items()}
# Generate response
with torch.no_grad():
output_ids = model.generate(
inputs['input_ids'],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
attention_mask=inputs['attention_mask'],
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode the response
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Extract only the new response (remove the input prompt)
assistant_response = response[len(full_prompt):].strip()
# Clean up the response - only remove special tokens, preserve thinking tags when enabled
assistant_response = re.sub(r'<\|im_start\|>.*?<\|im_end\|>', '', assistant_response, flags=re.DOTALL)
# Only remove thinking tags if thinking mode is disabled
if not enable_thinking:
assistant_response = re.sub(r'<think>.*?</think>', '', assistant_response, flags=re.DOTALL)
assistant_response = assistant_response.strip()
return assistant_response
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error generating response: {str(e)}"
def user(user_message, history):
"""Add user message to history"""
return "", history + [[user_message, None]]
def bot(history, system_prompt, max_length, temperature, top_p, advanced_checkbox, enable_thinking):
"""Generate bot response"""
user_message = history[-1][0]
do_sample = advanced_checkbox
bot_message = generate_response(user_message, history, system_prompt, max_length, temperature, top_p, do_sample, enable_thinking)
history[-1][1] = bot_message
return history
# Load model on startup
logger.info("Starting model loading process...")
load_model()
# Create Gradio interface
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(title)
with gr.Row():
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(presentation1)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(presentation2)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(joinus)
with gr.Column(scale=1):
pass # Empty column for balance
with gr.Row():
with gr.Column(scale=2):
system_prompt = gr.TextArea(
label="π Context",
placeholder="Tu es TonicIA, un assistant francophone rigoureux et bienveillant.",
lines=5,
value=DEFAULT_SYSTEM_PROMPT
)
user_input = gr.TextArea(
label="π€·π»ββοΈ User Input",
placeholder="Hi there my name is Tonic!",
lines=2
)
advanced_checkbox = gr.Checkbox(label="π§ͺ Advanced Settings", value=False)
with gr.Column(visible=False) as advanced_settings:
max_length = gr.Slider(
label="π Max Length",
minimum=64,
maximum=2048,
value=512,
step=64
)
temperature = gr.Slider(
label="π‘οΈ Temperature",
minimum=0.01,
maximum=1.0,
value=0.7,
step=0.01
)
top_p = gr.Slider(
label="βοΈ Top-p (Nucleus Sampling)",
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.01
)
enable_thinking = gr.Checkbox(label="Enable Thinking Mode", value=True)
generate_button = gr.Button(value="π€ Petite Elle L'Aime 3")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="π€ Petite Elle L'Aime 3")
generate_button.click(
user,
[user_input, chatbot],
[user_input, chatbot],
queue=False
).then(
bot,
[chatbot, system_prompt, max_length, temperature, top_p, advanced_checkbox, enable_thinking],
chatbot
)
advanced_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[advanced_checkbox],
outputs=[advanced_settings]
)
if __name__ == "__main__":
demo.queue()
demo.launch(ssr_mode=False, mcp_server=True) |