#!/usr/bin/env python3 """ Test script for full fine-tuned model loading and inference """ import torch from transformers import AutoModelForCausalLM, AutoTokenizer import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def test_full_model_loading(): """Test the full fine-tuned model loading and generation""" model_id = "Tonic/petite-elle-L-aime-3-sft" device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Testing full fine-tuned model on device: {device}") try: # Load tokenizer logger.info("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_id) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id # Load full fine-tuned model logger.info("Loading full fine-tuned model...") model_kwargs = { "device_map": "auto" if device == "cuda" else "cpu", "torch_dtype": torch.float16 if device == "cuda" else torch.float32, "trust_remote_code": True, "low_cpu_mem_usage": True, } model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs) # Test generation test_prompt = "Bonjour, comment allez-vous?" inputs = tokenizer(test_prompt, return_tensors="pt") if device == "cuda": inputs = {k: v.cuda() for k, v in inputs.items()} logger.info("Generating response...") with torch.no_grad(): output_ids = model.generate( inputs['input_ids'], max_new_tokens=50, temperature=0.7, top_p=0.95, do_sample=True, attention_mask=inputs['attention_mask'], pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) assistant_response = response[len(test_prompt):].strip() logger.info("✅ Full fine-tuned model test successful!") logger.info(f"Input: {test_prompt}") logger.info(f"Output: {assistant_response}") # Check model precision status logger.info("Checking model precision status...") float16_layers = 0 float32_layers = 0 total_layers = 0 for name, module in model.named_modules(): if hasattr(module, 'weight'): total_layers += 1 if module.weight.dtype == torch.float16: float16_layers += 1 elif module.weight.dtype == torch.float32: float32_layers += 1 logger.info(f"Float16 layers: {float16_layers}/{total_layers}") logger.info(f"Float32 layers: {float32_layers}/{total_layers}") # Clean up del model torch.cuda.empty_cache() if device == "cuda" else None return True except Exception as e: logger.error(f"❌ Full fine-tuned model test failed: {e}") import traceback traceback.print_exc() return False if __name__ == "__main__": success = test_full_model_loading() if success: print("✅ Full model loading test passed!") else: print("❌ Full model loading test failed!")