Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
|
| 3 |
+
import argparse
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import shortuuid
|
| 9 |
+
|
| 10 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
| 11 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
| 12 |
+
from llava.model.builder import load_pretrained_model
|
| 13 |
+
from llava.utils import disable_torch_init
|
| 14 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 15 |
+
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import math
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
model_path = 'kaist-ai/prometheus-vision-13b-v1.0'
|
| 21 |
+
model_name = 'llava-v1.5'
|
| 22 |
+
|
| 23 |
+
def split_list(lst, n):
|
| 24 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
| 25 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
| 26 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_chunk(lst, n, k):
|
| 30 |
+
chunks = split_list(lst, n)
|
| 31 |
+
return chunks[k]
|
| 32 |
+
|
| 33 |
+
@spaces.GPU
|
| 34 |
+
def eval_model(args, model_name = model_name, model_path = model_path):
|
| 35 |
+
disable_torch_init()
|
| 36 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
| 37 |
+
|
| 38 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
| 39 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
| 40 |
+
answers_file = os.path.expanduser(args.answers_file)
|
| 41 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
| 42 |
+
ans_file = open(answers_file, "w")
|
| 43 |
+
for line in tqdm(questions):
|
| 44 |
+
idx = line["question_id"]
|
| 45 |
+
image_file = line["image"]
|
| 46 |
+
qs = line["text"]
|
| 47 |
+
cur_prompt = qs
|
| 48 |
+
if model.config.mm_use_im_start_end:
|
| 49 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
| 50 |
+
else:
|
| 51 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 52 |
+
|
| 53 |
+
conv = conv_templates[args.conv_mode].copy()
|
| 54 |
+
conv.append_message(conv.roles[0], qs)
|
| 55 |
+
conv.append_message(conv.roles[1], None)
|
| 56 |
+
prompt = conv.get_prompt()
|
| 57 |
+
|
| 58 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
| 59 |
+
|
| 60 |
+
image = Image.open(os.path.join(args.image_folder, image_file))
|
| 61 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 62 |
+
|
| 63 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 64 |
+
keywords = [stop_str]
|
| 65 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 66 |
+
|
| 67 |
+
with torch.inference_mode():
|
| 68 |
+
output_ids = model.generate(
|
| 69 |
+
input_ids,
|
| 70 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
| 71 |
+
do_sample=True if args.temperature > 0 else False,
|
| 72 |
+
temperature=args.temperature,
|
| 73 |
+
top_p=args.top_p,
|
| 74 |
+
num_beams=args.num_beams,
|
| 75 |
+
# no_repeat_ngram_size=3,
|
| 76 |
+
max_new_tokens=1024,
|
| 77 |
+
use_cache=True)
|
| 78 |
+
|
| 79 |
+
input_token_len = input_ids.shape[1]
|
| 80 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
| 81 |
+
if n_diff_input_output > 0:
|
| 82 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
| 83 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
| 84 |
+
outputs = outputs.strip()
|
| 85 |
+
if outputs.endswith(stop_str):
|
| 86 |
+
outputs = outputs[:-len(stop_str)]
|
| 87 |
+
outputs = outputs.strip()
|
| 88 |
+
|
| 89 |
+
ans_id = shortuuid.uuid()
|
| 90 |
+
ans_file.write(json.dumps({"question_id": idx,
|
| 91 |
+
"prompt": cur_prompt,
|
| 92 |
+
"text": outputs,
|
| 93 |
+
"answer_id": ans_id,
|
| 94 |
+
"model_id": model_name,
|
| 95 |
+
"metadata": {}}) + "\n")
|
| 96 |
+
ans_file.flush()
|
| 97 |
+
ans_file.close()
|
| 98 |
+
|
| 99 |
+
def gradio_wrapper( model_path = model_path , model_name = model_name, image_folder, question_file, answers_file, conv_mode, num_chunks, chunk_idx, temperature, top_p, num_beams):
|
| 100 |
+
|
| 101 |
+
question_file_path = os.path.join(tempfile.mkdtemp(), "question.jsonl")
|
| 102 |
+
with open(question_file_path, "w") as f:
|
| 103 |
+
for question in question_file:
|
| 104 |
+
f.write(json.dumps(question) + "\n")
|
| 105 |
+
|
| 106 |
+
temp_image_folder = tempfile.mkdtemp()
|
| 107 |
+
for image_file in image_folder:
|
| 108 |
+
image_path = os.path.join(temp_image_folder, image_file.name)
|
| 109 |
+
image_file.save(image_path)
|
| 110 |
+
|
| 111 |
+
args = argparse.Namespace(
|
| 112 |
+
model_path=model_path,
|
| 113 |
+
model_base=model_base,
|
| 114 |
+
image_folder=temp_image_folder,
|
| 115 |
+
question_file=question_file_path,
|
| 116 |
+
answers_file=answers_file,
|
| 117 |
+
conv_mode=conv_mode,
|
| 118 |
+
num_chunks=num_chunks,
|
| 119 |
+
chunk_idx=chunk_idx,
|
| 120 |
+
temperature=temperature,
|
| 121 |
+
top_p=top_p,
|
| 122 |
+
num_beams=num_beams
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
eval_model(args)
|
| 126 |
+
|
| 127 |
+
with open(answers_file, "r") as f:
|
| 128 |
+
answers = f.readlines()
|
| 129 |
+
|
| 130 |
+
return answers
|
| 131 |
+
|
| 132 |
+
iface = gr.Interface(
|
| 133 |
+
fn=gradio_wrapper,
|
| 134 |
+
inputs=[
|
| 135 |
+
gr.File(label="Image Folder", type="file", multiple=True),
|
| 136 |
+
gr.JSON(label="Question File"),
|
| 137 |
+
gr.Textbox(label="Answers File"),
|
| 138 |
+
gr.Dropdown(label="Conversation Mode", choices=["llava_v1"]),
|
| 139 |
+
gr.Slider(label="Number of Chunks", min_value=1, max_value=10, step=1, value=1),
|
| 140 |
+
gr.Slider(label="Chunk Index", min_value=0, max_value=9, step=1, value=0),
|
| 141 |
+
gr.Slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=0.2),
|
| 142 |
+
gr.Textbox(label="Top P", value=None),
|
| 143 |
+
gr.Slider(label="Number of Beams", min_value=1, max_value=10, step=1, value=1)
|
| 144 |
+
],
|
| 145 |
+
outputs=[
|
| 146 |
+
gr.Textbox(label="Answers")
|
| 147 |
+
],
|
| 148 |
+
title="Model Evaluation Interface",
|
| 149 |
+
description="A Gradio interface for evaluating models."
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
if __name__ == "__main__":
|
| 153 |
+
iface.launch()
|