Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	improves spaces deployment , configuration for custom settings , adds interface for spaces deployment
Browse files- config/train_smollm3.py +2 -0
- interface.py +1165 -0
- launch.sh +159 -85
- requirements/requirements_core.txt +3 -1
- scripts/deploy_demo_space.py +151 -31
- scripts/training/train_gpt_oss.py +2 -1
- src/monitoring.py +69 -33
- src/trackio.py +8 -1
- src/train.py +12 -8
- templates/model_card.md +1 -1
- templates/spaces/demo_gpt/app.py +56 -9
- templates/spaces/trackio/app.py +266 -33
    	
        config/train_smollm3.py
    CHANGED
    
    | @@ -82,6 +82,8 @@ class SmolLM3Config: | |
| 82 | 
             
                # HF Datasets configuration
         | 
| 83 | 
             
                hf_token: Optional[str] = None
         | 
| 84 | 
             
                dataset_repo: Optional[str] = None
         | 
|  | |
|  | |
| 85 |  | 
| 86 |  | 
| 87 | 
             
                def __post_init__(self):
         | 
|  | |
| 82 | 
             
                # HF Datasets configuration
         | 
| 83 | 
             
                hf_token: Optional[str] = None
         | 
| 84 | 
             
                dataset_repo: Optional[str] = None
         | 
| 85 | 
            +
                # Monitoring mode: 'both' | 'dataset' | 'trackio' | 'none'
         | 
| 86 | 
            +
                monitoring_mode: str = 'both'
         | 
| 87 |  | 
| 88 |  | 
| 89 | 
             
                def __post_init__(self):
         | 
    	
        interface.py
    ADDED
    
    | @@ -0,0 +1,1165 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python3
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            Gradio Interface for SmolLM3/GPT-OSS Fine-tuning Pipeline
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            This app mirrors the core flow of launch.sh with a click-and-run UI.
         | 
| 6 | 
            +
            Tokens are read from environment variables:
         | 
| 7 | 
            +
              - HF_WRITE_TOKEN (required)
         | 
| 8 | 
            +
              - HF_READ_TOKEN (optional; used to switch the Trackio Space token after training)
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            Key steps (configurable via UI):
         | 
| 11 | 
            +
              1) Optional HF Dataset repo setup for Trackio
         | 
| 12 | 
            +
              2) Optional Trackio Space deployment
         | 
| 13 | 
            +
              3) Training (SmolLM3 or GPT-OSS)
         | 
| 14 | 
            +
              4) Push trained model to the HF Hub
         | 
| 15 | 
            +
              5) Optional switch Trackio HF_TOKEN to read token
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            This uses the existing scripts in scripts/ and config/ to avoid code duplication.
         | 
| 18 | 
            +
            """
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from __future__ import annotations
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import os
         | 
| 23 | 
            +
            import sys
         | 
| 24 | 
            +
            import time
         | 
| 25 | 
            +
            import json
         | 
| 26 | 
            +
            import shlex
         | 
| 27 | 
            +
            import traceback
         | 
| 28 | 
            +
            import importlib.util
         | 
| 29 | 
            +
            from dataclasses import dataclass
         | 
| 30 | 
            +
            from datetime import datetime
         | 
| 31 | 
            +
            from pathlib import Path
         | 
| 32 | 
            +
            from typing import Dict, Any, Generator, Optional, Tuple
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            # Third-party
         | 
| 35 | 
            +
            try:
         | 
| 36 | 
            +
                import gradio as gr  # type: ignore
         | 
| 37 | 
            +
            except Exception as _e:
         | 
| 38 | 
            +
                raise RuntimeError(
         | 
| 39 | 
            +
                    "Gradio is required. Please install it first: pip install gradio"
         | 
| 40 | 
            +
                ) from _e
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 44 | 
            +
            # Utilities
         | 
| 45 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            PROJECT_ROOT = Path(__file__).resolve().parent
         | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            def mask_token(token: Optional[str]) -> str:
         | 
| 51 | 
            +
                if not token:
         | 
| 52 | 
            +
                    return "<not set>"
         | 
| 53 | 
            +
                token = str(token)
         | 
| 54 | 
            +
                if len(token) <= 8:
         | 
| 55 | 
            +
                    return "*" * len(token)
         | 
| 56 | 
            +
                return f"{token[:4]}****{token[-4:]}"
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            def get_python() -> str:
         | 
| 60 | 
            +
                return sys.executable or "python"
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            def get_username_from_token(token: str) -> Optional[str]:
         | 
| 64 | 
            +
                try:
         | 
| 65 | 
            +
                    from huggingface_hub import HfApi  # type: ignore
         | 
| 66 | 
            +
                    api = HfApi(token=token)
         | 
| 67 | 
            +
                    info = api.whoami()
         | 
| 68 | 
            +
                    if isinstance(info, dict):
         | 
| 69 | 
            +
                        return info.get("name") or info.get("username")
         | 
| 70 | 
            +
                    if isinstance(info, str):
         | 
| 71 | 
            +
                        return info
         | 
| 72 | 
            +
                except Exception:
         | 
| 73 | 
            +
                    return None
         | 
| 74 | 
            +
                return None
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            def detect_nvidia_driver() -> Tuple[bool, str]:
         | 
| 78 | 
            +
                """Detect NVIDIA driver/GPU presence with multiple strategies.
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                Returns (available, human_message).
         | 
| 81 | 
            +
                """
         | 
| 82 | 
            +
                # 1) Try torch CUDA
         | 
| 83 | 
            +
                try:
         | 
| 84 | 
            +
                    import torch  # type: ignore
         | 
| 85 | 
            +
                    if torch.cuda.is_available():
         | 
| 86 | 
            +
                        try:
         | 
| 87 | 
            +
                            num = torch.cuda.device_count()
         | 
| 88 | 
            +
                            names = [torch.cuda.get_device_name(i) for i in range(num)]
         | 
| 89 | 
            +
                            return True, f"NVIDIA GPU detected: {', '.join(names)}"
         | 
| 90 | 
            +
                        except Exception:
         | 
| 91 | 
            +
                            return True, "NVIDIA GPU detected (torch.cuda available)"
         | 
| 92 | 
            +
                except Exception:
         | 
| 93 | 
            +
                    pass
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                # 2) Try NVML via pynvml
         | 
| 96 | 
            +
                try:
         | 
| 97 | 
            +
                    import pynvml  # type: ignore
         | 
| 98 | 
            +
                    try:
         | 
| 99 | 
            +
                        pynvml.nvmlInit()
         | 
| 100 | 
            +
                        cnt = pynvml.nvmlDeviceGetCount()
         | 
| 101 | 
            +
                        names = []
         | 
| 102 | 
            +
                        for i in range(cnt):
         | 
| 103 | 
            +
                            h = pynvml.nvmlDeviceGetHandleByIndex(i)
         | 
| 104 | 
            +
                            names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore"))
         | 
| 105 | 
            +
                        drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore")
         | 
| 106 | 
            +
                        pynvml.nvmlShutdown()
         | 
| 107 | 
            +
                        if cnt > 0:
         | 
| 108 | 
            +
                            return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}"
         | 
| 109 | 
            +
                    except Exception:
         | 
| 110 | 
            +
                        pass
         | 
| 111 | 
            +
                except Exception:
         | 
| 112 | 
            +
                    pass
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                # 3) Try nvidia-smi
         | 
| 115 | 
            +
                try:
         | 
| 116 | 
            +
                    import subprocess
         | 
| 117 | 
            +
                    res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3)
         | 
| 118 | 
            +
                    if res.returncode == 0 and res.stdout.strip():
         | 
| 119 | 
            +
                        return True, res.stdout.strip().splitlines()[0]
         | 
| 120 | 
            +
                except Exception:
         | 
| 121 | 
            +
                    pass
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                return False, "No NVIDIA driver/GPU detected"
         | 
| 124 | 
            +
             | 
| 125 | 
            +
             | 
| 126 | 
            +
            def duplicate_space_hint() -> str:
         | 
| 127 | 
            +
                space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID")
         | 
| 128 | 
            +
                if space_id:
         | 
| 129 | 
            +
                    space_url = f"https://huggingface.co/spaces/{space_id}"
         | 
| 130 | 
            +
                    dup_url = f"{space_url}?duplicate=true"
         | 
| 131 | 
            +
                    return (
         | 
| 132 | 
            +
                        f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, "
         | 
| 133 | 
            +
                        f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})."
         | 
| 134 | 
            +
                    )
         | 
| 135 | 
            +
                return (
         | 
| 136 | 
            +
                    "ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver "
         | 
| 137 | 
            +
                    "or duplicate this Space on Hugging Face with GPU hardware."
         | 
| 138 | 
            +
                )
         | 
| 139 | 
            +
             | 
| 140 | 
            +
             | 
| 141 | 
            +
            def _write_generated_config(filename: str, content: str) -> Path:
         | 
| 142 | 
            +
                """Write a generated config under config/ and return the full path."""
         | 
| 143 | 
            +
                cfg_dir = PROJECT_ROOT / "config"
         | 
| 144 | 
            +
                cfg_dir.mkdir(parents=True, exist_ok=True)
         | 
| 145 | 
            +
                path = cfg_dir / filename
         | 
| 146 | 
            +
                with open(path, "w", encoding="utf-8") as f:
         | 
| 147 | 
            +
                    f.write(content)
         | 
| 148 | 
            +
                return path
         | 
| 149 | 
            +
             | 
| 150 | 
            +
             | 
| 151 | 
            +
            def generate_medical_o1_config_file(
         | 
| 152 | 
            +
                dataset_config: str,
         | 
| 153 | 
            +
                system_message: Optional[str],
         | 
| 154 | 
            +
                developer_message: Optional[str],
         | 
| 155 | 
            +
                num_train_epochs: float,
         | 
| 156 | 
            +
                batch_size: int,
         | 
| 157 | 
            +
                gradient_accumulation_steps: int,
         | 
| 158 | 
            +
                learning_rate: float,
         | 
| 159 | 
            +
                max_seq_length: int,
         | 
| 160 | 
            +
            ) -> Path:
         | 
| 161 | 
            +
                """Create a GPT-OSS Medical o1 SFT config file from user inputs."""
         | 
| 162 | 
            +
                # Sanitize quotes in messages
         | 
| 163 | 
            +
                def _q(s: Optional[str]) -> str:
         | 
| 164 | 
            +
                    if s is None or s == "":
         | 
| 165 | 
            +
                        return "None"
         | 
| 166 | 
            +
                    return repr(s)
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                py = f"""
         | 
| 169 | 
            +
            from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            config = GPTOSSEnhancedCustomConfig(
         | 
| 172 | 
            +
                dataset_name="FreedomIntelligence/medical-o1-reasoning-SFT",
         | 
| 173 | 
            +
                dataset_config={repr(dataset_config)},
         | 
| 174 | 
            +
                dataset_split="train",
         | 
| 175 | 
            +
                dataset_format="medical_o1_sft",
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                # Field mapping and prefixes
         | 
| 178 | 
            +
                input_field="Question",
         | 
| 179 | 
            +
                target_field="Response",
         | 
| 180 | 
            +
                question_field="Question",
         | 
| 181 | 
            +
                reasoning_field="Complex_CoT",
         | 
| 182 | 
            +
                response_field="Response",
         | 
| 183 | 
            +
                reason_prefix="Reasoning: ",
         | 
| 184 | 
            +
                answer_prefix="Final Answer: ",
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                # Optional context
         | 
| 187 | 
            +
                system_message={_q(system_message)},
         | 
| 188 | 
            +
                developer_message={_q(developer_message)},
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                # Training hyperparameters
         | 
| 191 | 
            +
                num_train_epochs={num_train_epochs},
         | 
| 192 | 
            +
                batch_size={batch_size},
         | 
| 193 | 
            +
                gradient_accumulation_steps={gradient_accumulation_steps},
         | 
| 194 | 
            +
                learning_rate={learning_rate},
         | 
| 195 | 
            +
                min_lr=2e-5,
         | 
| 196 | 
            +
                weight_decay=0.01,
         | 
| 197 | 
            +
                warmup_ratio=0.03,
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                # Sequence length
         | 
| 200 | 
            +
                max_seq_length={max_seq_length},
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                # Precision & performance
         | 
| 203 | 
            +
                fp16=False,
         | 
| 204 | 
            +
                bf16=True,
         | 
| 205 | 
            +
                dataloader_num_workers=4,
         | 
| 206 | 
            +
                dataloader_pin_memory=True,
         | 
| 207 | 
            +
                dataloader_prefetch_factor=2,
         | 
| 208 | 
            +
                group_by_length=True,
         | 
| 209 | 
            +
                remove_unused_columns=True,
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                # LoRA & quantization
         | 
| 212 | 
            +
                use_lora=True,
         | 
| 213 | 
            +
                lora_config={
         | 
| 214 | 
            +
                    "r": 16,
         | 
| 215 | 
            +
                    "lora_alpha": 32,
         | 
| 216 | 
            +
                    "lora_dropout": 0.05,
         | 
| 217 | 
            +
                    "target_modules": "all-linear",
         | 
| 218 | 
            +
                    "target_parameters": [
         | 
| 219 | 
            +
                        "7.mlp.experts.gate_up_proj",
         | 
| 220 | 
            +
                        "7.mlp.experts.down_proj",
         | 
| 221 | 
            +
                        "15.mlp.experts.gate_up_proj",
         | 
| 222 | 
            +
                        "15.mlp.experts.down_proj",
         | 
| 223 | 
            +
                        "23.mlp.experts.gate_up_proj",
         | 
| 224 | 
            +
                        "23.mlp.experts.down_proj",
         | 
| 225 | 
            +
                    ],
         | 
| 226 | 
            +
                    "bias": "none",
         | 
| 227 | 
            +
                    "task_type": "CAUSAL_LM",
         | 
| 228 | 
            +
                },
         | 
| 229 | 
            +
                use_quantization=True,
         | 
| 230 | 
            +
                quantization_config={
         | 
| 231 | 
            +
                    "dequantize": True,
         | 
| 232 | 
            +
                    "load_in_4bit": False,
         | 
| 233 | 
            +
                },
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                # Logging & evaluation
         | 
| 236 | 
            +
                eval_strategy="steps",
         | 
| 237 | 
            +
                eval_steps=100,
         | 
| 238 | 
            +
                logging_steps=10,
         | 
| 239 | 
            +
                save_strategy="steps",
         | 
| 240 | 
            +
                save_steps=500,
         | 
| 241 | 
            +
                save_total_limit=3,
         | 
| 242 | 
            +
                metric_for_best_model="eval_loss",
         | 
| 243 | 
            +
                greater_is_better=False,
         | 
| 244 | 
            +
            )
         | 
| 245 | 
            +
            """
         | 
| 246 | 
            +
                return _write_generated_config("_generated_gpt_oss_medical_o1_sft.py", py)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
             | 
| 249 | 
            +
            def generate_gpt_oss_custom_config_file(
         | 
| 250 | 
            +
                dataset_name: str,
         | 
| 251 | 
            +
                dataset_split: str,
         | 
| 252 | 
            +
                dataset_format: str,
         | 
| 253 | 
            +
                input_field: str,
         | 
| 254 | 
            +
                target_field: Optional[str],
         | 
| 255 | 
            +
                system_message: Optional[str],
         | 
| 256 | 
            +
                developer_message: Optional[str],
         | 
| 257 | 
            +
                model_identity: Optional[str],
         | 
| 258 | 
            +
                max_samples: Optional[int],
         | 
| 259 | 
            +
                min_length: int,
         | 
| 260 | 
            +
                max_length: Optional[int],
         | 
| 261 | 
            +
                num_train_epochs: float,
         | 
| 262 | 
            +
                batch_size: int,
         | 
| 263 | 
            +
                gradient_accumulation_steps: int,
         | 
| 264 | 
            +
                learning_rate: float,
         | 
| 265 | 
            +
                min_lr: float,
         | 
| 266 | 
            +
                weight_decay: float,
         | 
| 267 | 
            +
                warmup_ratio: float,
         | 
| 268 | 
            +
                max_seq_length: int,
         | 
| 269 | 
            +
                lora_r: int,
         | 
| 270 | 
            +
                lora_alpha: int,
         | 
| 271 | 
            +
                lora_dropout: float,
         | 
| 272 | 
            +
                mixed_precision: str,  # "bf16"|"fp16"|"fp32"
         | 
| 273 | 
            +
                num_workers: int,
         | 
| 274 | 
            +
                quantization_type: str,  # "mxfp4"|"bnb4"|"none"
         | 
| 275 | 
            +
                max_grad_norm: float,
         | 
| 276 | 
            +
                logging_steps: int,
         | 
| 277 | 
            +
                eval_steps: int,
         | 
| 278 | 
            +
                save_steps: int,
         | 
| 279 | 
            +
            ) -> Path:
         | 
| 280 | 
            +
                # Precision flags
         | 
| 281 | 
            +
                if mixed_precision.lower() == "bf16":
         | 
| 282 | 
            +
                    fp16_flag = False
         | 
| 283 | 
            +
                    bf16_flag = True
         | 
| 284 | 
            +
                elif mixed_precision.lower() == "fp16":
         | 
| 285 | 
            +
                    fp16_flag = True
         | 
| 286 | 
            +
                    bf16_flag = False
         | 
| 287 | 
            +
                else:
         | 
| 288 | 
            +
                    fp16_flag = False
         | 
| 289 | 
            +
                    bf16_flag = False
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                # Quantization flags/config
         | 
| 292 | 
            +
                if quantization_type == "mxfp4":
         | 
| 293 | 
            +
                    use_quant = True
         | 
| 294 | 
            +
                    quant_cfg = '{"dequantize": True, "load_in_4bit": False}'
         | 
| 295 | 
            +
                elif quantization_type == "bnb4":
         | 
| 296 | 
            +
                    use_quant = True
         | 
| 297 | 
            +
                    quant_cfg = '{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}'
         | 
| 298 | 
            +
                else:
         | 
| 299 | 
            +
                    use_quant = False
         | 
| 300 | 
            +
                    quant_cfg = '{"dequantize": False, "load_in_4bit": False}'
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                def _q(s: Optional[str]) -> str:
         | 
| 303 | 
            +
                    if s is None or s == "":
         | 
| 304 | 
            +
                        return "None"
         | 
| 305 | 
            +
                    return repr(s)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                py = f"""
         | 
| 308 | 
            +
            from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
         | 
| 309 | 
            +
             | 
| 310 | 
            +
            config = GPTOSSEnhancedCustomConfig(
         | 
| 311 | 
            +
                # Dataset
         | 
| 312 | 
            +
                dataset_name={repr(dataset_name)},
         | 
| 313 | 
            +
                dataset_split={repr(dataset_split)},
         | 
| 314 | 
            +
                dataset_format={repr(dataset_format)},
         | 
| 315 | 
            +
                input_field={repr(input_field)},
         | 
| 316 | 
            +
                target_field={repr(target_field)} if {repr(target_field)} != 'None' else None,
         | 
| 317 | 
            +
                system_message={_q(system_message)},
         | 
| 318 | 
            +
                developer_message={_q(developer_message)},
         | 
| 319 | 
            +
                max_samples={repr(max_samples)} if {repr(max_samples)} != 'None' else None,
         | 
| 320 | 
            +
                min_length={min_length},
         | 
| 321 | 
            +
                max_length={repr(max_length)} if {repr(max_length)} != 'None' else None,
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                # Training hyperparameters
         | 
| 324 | 
            +
                num_train_epochs={num_train_epochs},
         | 
| 325 | 
            +
                batch_size={batch_size},
         | 
| 326 | 
            +
                gradient_accumulation_steps={gradient_accumulation_steps},
         | 
| 327 | 
            +
                learning_rate={learning_rate},
         | 
| 328 | 
            +
                min_lr={min_lr},
         | 
| 329 | 
            +
                weight_decay={weight_decay},
         | 
| 330 | 
            +
                warmup_ratio={warmup_ratio},
         | 
| 331 | 
            +
                max_grad_norm={max_grad_norm},
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                # Model
         | 
| 334 | 
            +
                max_seq_length={max_seq_length},
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                # Precision
         | 
| 337 | 
            +
                fp16={str(fp16_flag)},
         | 
| 338 | 
            +
                bf16={str(bf16_flag)},
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                # LoRA
         | 
| 341 | 
            +
                lora_config={{
         | 
| 342 | 
            +
                    "r": {lora_r},
         | 
| 343 | 
            +
                    "lora_alpha": {lora_alpha},
         | 
| 344 | 
            +
                    "lora_dropout": {lora_dropout},
         | 
| 345 | 
            +
                    "target_modules": "all-linear",
         | 
| 346 | 
            +
                    "bias": "none",
         | 
| 347 | 
            +
                    "task_type": "CAUSAL_LM",
         | 
| 348 | 
            +
                }},
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                # Quantization
         | 
| 351 | 
            +
                use_quantization={str(use_quant)},
         | 
| 352 | 
            +
                quantization_config={quant_cfg},
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                # Performance
         | 
| 355 | 
            +
                dataloader_num_workers={num_workers},
         | 
| 356 | 
            +
                dataloader_pin_memory=True,
         | 
| 357 | 
            +
                group_by_length=True,
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                # Logging & eval
         | 
| 360 | 
            +
                logging_steps={logging_steps},
         | 
| 361 | 
            +
                eval_steps={eval_steps},
         | 
| 362 | 
            +
                save_steps={save_steps},
         | 
| 363 | 
            +
                
         | 
| 364 | 
            +
                # Chat template (Harmony)
         | 
| 365 | 
            +
                chat_template_kwargs={{
         | 
| 366 | 
            +
                    "add_generation_prompt": True,
         | 
| 367 | 
            +
                    "tokenize": False,
         | 
| 368 | 
            +
                    "auto_insert_role": True,
         | 
| 369 | 
            +
                    "reasoning_effort": "medium",
         | 
| 370 | 
            +
                    "model_identity": {_q(model_identity) if _q(model_identity) != 'None' else repr('You are GPT-Tonic, a large language model trained by TonicAI.')},
         | 
| 371 | 
            +
                    "builtin_tools": [],
         | 
| 372 | 
            +
                }},
         | 
| 373 | 
            +
            )
         | 
| 374 | 
            +
            """
         | 
| 375 | 
            +
                return _write_generated_config("_generated_gpt_oss_custom.py", py)
         | 
| 376 | 
            +
             | 
| 377 | 
            +
             | 
| 378 | 
            +
            def generate_smollm3_custom_config_file(
         | 
| 379 | 
            +
                model_name: str,
         | 
| 380 | 
            +
                dataset_name: Optional[str],
         | 
| 381 | 
            +
                max_seq_length: int,
         | 
| 382 | 
            +
                batch_size: int,
         | 
| 383 | 
            +
                gradient_accumulation_steps: int,
         | 
| 384 | 
            +
                learning_rate: float,
         | 
| 385 | 
            +
                save_steps: int,
         | 
| 386 | 
            +
                eval_steps: int,
         | 
| 387 | 
            +
                logging_steps: int,
         | 
| 388 | 
            +
                filter_bad_entries: bool,
         | 
| 389 | 
            +
                input_field: str,
         | 
| 390 | 
            +
                target_field: str,
         | 
| 391 | 
            +
                sample_size: Optional[int],
         | 
| 392 | 
            +
                sample_seed: int,
         | 
| 393 | 
            +
                trainer_type: str,
         | 
| 394 | 
            +
            ) -> Path:
         | 
| 395 | 
            +
                # Create subclass to include dataset fields similar to other configs
         | 
| 396 | 
            +
                def _bool(b: bool) -> str:
         | 
| 397 | 
            +
                    return "True" if b else "False"
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                ds_section = """
         | 
| 400 | 
            +
                # HF Dataset configuration
         | 
| 401 | 
            +
                dataset_name={}
         | 
| 402 | 
            +
                dataset_split="train"
         | 
| 403 | 
            +
                input_field={}
         | 
| 404 | 
            +
                target_field={}
         | 
| 405 | 
            +
                filter_bad_entries={}
         | 
| 406 | 
            +
                bad_entry_field="bad_entry"
         | 
| 407 | 
            +
                sample_size={}
         | 
| 408 | 
            +
                sample_seed={}
         | 
| 409 | 
            +
                """.format(
         | 
| 410 | 
            +
                    repr(dataset_name) if dataset_name else "None",
         | 
| 411 | 
            +
                    repr(input_field),
         | 
| 412 | 
            +
                    repr(target_field),
         | 
| 413 | 
            +
                    _bool(filter_bad_entries),
         | 
| 414 | 
            +
                    repr(sample_size) if sample_size is not None else "None",
         | 
| 415 | 
            +
                    sample_seed,
         | 
| 416 | 
            +
                )
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                py = f"""
         | 
| 419 | 
            +
            from dataclasses import dataclass
         | 
| 420 | 
            +
            from typing import Optional
         | 
| 421 | 
            +
            from config.train_smollm3 import SmolLM3Config
         | 
| 422 | 
            +
             | 
| 423 | 
            +
            @dataclass
         | 
| 424 | 
            +
            class SmolLM3GeneratedConfig(SmolLM3Config):
         | 
| 425 | 
            +
            {ds_section}
         | 
| 426 | 
            +
             | 
| 427 | 
            +
            config = SmolLM3GeneratedConfig(
         | 
| 428 | 
            +
                trainer_type={repr(trainer_type.lower())},
         | 
| 429 | 
            +
                model_name={repr(model_name)},
         | 
| 430 | 
            +
                max_seq_length={max_seq_length},
         | 
| 431 | 
            +
                use_flash_attention=True,
         | 
| 432 | 
            +
                use_gradient_checkpointing=True,
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                batch_size={batch_size},
         | 
| 435 | 
            +
                gradient_accumulation_steps={gradient_accumulation_steps},
         | 
| 436 | 
            +
                learning_rate={learning_rate},
         | 
| 437 | 
            +
                weight_decay=0.01,
         | 
| 438 | 
            +
                warmup_steps=100,
         | 
| 439 | 
            +
                max_iters=None,
         | 
| 440 | 
            +
                eval_interval={eval_steps},
         | 
| 441 | 
            +
                log_interval={logging_steps},
         | 
| 442 | 
            +
                save_interval={save_steps},
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                optimizer="adamw",
         | 
| 445 | 
            +
                beta1=0.9,
         | 
| 446 | 
            +
                beta2=0.95,
         | 
| 447 | 
            +
                eps=1e-8,
         | 
| 448 | 
            +
                scheduler="cosine",
         | 
| 449 | 
            +
                min_lr=1e-6,
         | 
| 450 | 
            +
                fp16=True,
         | 
| 451 | 
            +
                bf16=False,
         | 
| 452 | 
            +
                save_steps={save_steps},
         | 
| 453 | 
            +
                eval_steps={eval_steps},
         | 
| 454 | 
            +
                logging_steps={logging_steps},
         | 
| 455 | 
            +
                save_total_limit=3,
         | 
| 456 | 
            +
                eval_strategy="steps",
         | 
| 457 | 
            +
                metric_for_best_model="eval_loss",
         | 
| 458 | 
            +
                greater_is_better=False,
         | 
| 459 | 
            +
                load_best_model_at_end=True,
         | 
| 460 | 
            +
            )
         | 
| 461 | 
            +
            """
         | 
| 462 | 
            +
                return _write_generated_config("_generated_smollm3_custom.py", py)
         | 
| 463 | 
            +
             | 
| 464 | 
            +
            def ensure_dataset_repo(username: str, dataset_name: str, token: str) -> Tuple[str, bool, str]:
         | 
| 465 | 
            +
                """Create or ensure dataset repo exists. Returns (repo_id, created_or_exists, message)."""
         | 
| 466 | 
            +
                from huggingface_hub import create_repo  # type: ignore
         | 
| 467 | 
            +
                repo_id = f"{username}/{dataset_name}"
         | 
| 468 | 
            +
                try:
         | 
| 469 | 
            +
                    create_repo(repo_id=repo_id, repo_type="dataset", token=token, exist_ok=True, private=False)
         | 
| 470 | 
            +
                    return repo_id, True, f"Dataset repo ready: {repo_id}"
         | 
| 471 | 
            +
                except Exception as e:
         | 
| 472 | 
            +
                    return repo_id, False, f"Failed to create dataset repo {repo_id}: {e}"
         | 
| 473 | 
            +
             | 
| 474 | 
            +
             | 
| 475 | 
            +
            def import_config_object(config_path: Path) -> Optional[Any]:
         | 
| 476 | 
            +
                """Import a config file and return its 'config' object if present, else None."""
         | 
| 477 | 
            +
                try:
         | 
| 478 | 
            +
                    spec = importlib.util.spec_from_file_location("config_module", str(config_path))
         | 
| 479 | 
            +
                    if not spec or not spec.loader:
         | 
| 480 | 
            +
                        return None
         | 
| 481 | 
            +
                    module = importlib.util.module_from_spec(spec)
         | 
| 482 | 
            +
                    spec.loader.exec_module(module)  # type: ignore
         | 
| 483 | 
            +
                    if hasattr(module, "config"):
         | 
| 484 | 
            +
                        return getattr(module, "config")
         | 
| 485 | 
            +
                    return None
         | 
| 486 | 
            +
                except Exception:
         | 
| 487 | 
            +
                    return None
         | 
| 488 | 
            +
             | 
| 489 | 
            +
             | 
| 490 | 
            +
            def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]:
         | 
| 491 | 
            +
                """Run a command and yield stdout/stderr lines as they arrive. Returns exit code at the end."""
         | 
| 492 | 
            +
                import subprocess
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}"
         | 
| 495 | 
            +
                process = subprocess.Popen(
         | 
| 496 | 
            +
                    [get_python()] + args,
         | 
| 497 | 
            +
                    stdout=subprocess.PIPE,
         | 
| 498 | 
            +
                    stderr=subprocess.STDOUT,
         | 
| 499 | 
            +
                    text=True,
         | 
| 500 | 
            +
                    env=env,
         | 
| 501 | 
            +
                    cwd=str(cwd or PROJECT_ROOT),
         | 
| 502 | 
            +
                    bufsize=1,
         | 
| 503 | 
            +
                    universal_newlines=True,
         | 
| 504 | 
            +
                )
         | 
| 505 | 
            +
                assert process.stdout is not None
         | 
| 506 | 
            +
                for line in iter(process.stdout.readline, ""):
         | 
| 507 | 
            +
                    yield line.rstrip()
         | 
| 508 | 
            +
                process.stdout.close()
         | 
| 509 | 
            +
                code = process.wait()
         | 
| 510 | 
            +
                yield f"[exit_code={code}]"
         | 
| 511 | 
            +
                return code
         | 
| 512 | 
            +
             | 
| 513 | 
            +
             | 
| 514 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 515 | 
            +
            # Configuration Mappings (mirror launch.sh)
         | 
| 516 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 517 | 
            +
             | 
| 518 | 
            +
            SMOL_CONFIGS = {
         | 
| 519 | 
            +
                "Basic Training": {
         | 
| 520 | 
            +
                    "config_file": "config/train_smollm3.py",
         | 
| 521 | 
            +
                    "default_model": "HuggingFaceTB/SmolLM3-3B",
         | 
| 522 | 
            +
                },
         | 
| 523 | 
            +
                "H100 Lightweight (Rapid)": {
         | 
| 524 | 
            +
                    "config_file": "config/train_smollm3_h100_lightweight.py",
         | 
| 525 | 
            +
                    "default_model": "HuggingFaceTB/SmolLM3-3B",
         | 
| 526 | 
            +
                },
         | 
| 527 | 
            +
                "A100 Large Scale": {
         | 
| 528 | 
            +
                    "config_file": "config/train_smollm3_openhermes_fr_a100_large.py",
         | 
| 529 | 
            +
                    "default_model": "HuggingFaceTB/SmolLM3-3B",
         | 
| 530 | 
            +
                },
         | 
| 531 | 
            +
                "Multiple Passes": {
         | 
| 532 | 
            +
                    "config_file": "config/train_smollm3_openhermes_fr_a100_multiple_passes.py",
         | 
| 533 | 
            +
                    "default_model": "HuggingFaceTB/SmolLM3-3B",
         | 
| 534 | 
            +
                },
         | 
| 535 | 
            +
            }
         | 
| 536 | 
            +
             | 
| 537 | 
            +
            GPT_OSS_CONFIGS = {
         | 
| 538 | 
            +
                "GPT-OSS Basic Training": {
         | 
| 539 | 
            +
                    "config_file": "config/train_gpt_oss_basic.py",
         | 
| 540 | 
            +
                    "default_model": "openai/gpt-oss-20b",
         | 
| 541 | 
            +
                },
         | 
| 542 | 
            +
                "GPT-OSS H100 Optimized": {
         | 
| 543 | 
            +
                    "config_file": "config/train_gpt_oss_h100_optimized.py",
         | 
| 544 | 
            +
                    "default_model": "openai/gpt-oss-20b",
         | 
| 545 | 
            +
                },
         | 
| 546 | 
            +
                "GPT-OSS Multilingual Reasoning": {
         | 
| 547 | 
            +
                    "config_file": "config/train_gpt_oss_multilingual_reasoning.py",
         | 
| 548 | 
            +
                    "default_model": "openai/gpt-oss-20b",
         | 
| 549 | 
            +
                },
         | 
| 550 | 
            +
                "GPT-OSS Memory Optimized": {
         | 
| 551 | 
            +
                    "config_file": "config/train_gpt_oss_memory_optimized.py",
         | 
| 552 | 
            +
                    "default_model": "openai/gpt-oss-20b",
         | 
| 553 | 
            +
                },
         | 
| 554 | 
            +
                "GPT-OSS OpenHermes-FR (Recommended)": {
         | 
| 555 | 
            +
                    "config_file": "config/train_gpt_oss_openhermes_fr.py",
         | 
| 556 | 
            +
                    "default_model": "openai/gpt-oss-20b",
         | 
| 557 | 
            +
                },
         | 
| 558 | 
            +
                "GPT-OSS OpenHermes-FR Memory Optimized": {
         | 
| 559 | 
            +
                    "config_file": "config/train_gpt_oss_openhermes_fr_memory_optimized.py",
         | 
| 560 | 
            +
                    "default_model": "openai/gpt-oss-20b",
         | 
| 561 | 
            +
                },
         | 
| 562 | 
            +
                # Custom dataset and medical SFT can be added later as advanced UI panels
         | 
| 563 | 
            +
            }
         | 
| 564 | 
            +
             | 
| 565 | 
            +
             | 
| 566 | 
            +
            def get_config_map(family: str) -> Dict[str, Dict[str, str]]:
         | 
| 567 | 
            +
                return SMOL_CONFIGS if family == "SmolLM3" else GPT_OSS_CONFIGS
         | 
| 568 | 
            +
             | 
| 569 | 
            +
             | 
| 570 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 571 | 
            +
            # Pipeline Orchestration
         | 
| 572 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 573 | 
            +
             | 
| 574 | 
            +
            @dataclass
         | 
| 575 | 
            +
            class PipelineInputs:
         | 
| 576 | 
            +
                model_family: str
         | 
| 577 | 
            +
                config_choice: str
         | 
| 578 | 
            +
                trainer_type: str  # "SFT" | "DPO"
         | 
| 579 | 
            +
                monitoring_mode: str  # "both" | "trackio" | "dataset" | "none"
         | 
| 580 | 
            +
                experiment_name: str
         | 
| 581 | 
            +
                repo_short: str
         | 
| 582 | 
            +
                author_name: str
         | 
| 583 | 
            +
                model_description: str
         | 
| 584 | 
            +
                trackio_space_name: Optional[str]
         | 
| 585 | 
            +
                deploy_trackio_space: bool
         | 
| 586 | 
            +
                create_dataset_repo: bool
         | 
| 587 | 
            +
                push_to_hub: bool
         | 
| 588 | 
            +
                switch_to_read_after: bool
         | 
| 589 | 
            +
                scheduler_override: Optional[str]
         | 
| 590 | 
            +
                min_lr: Optional[float]
         | 
| 591 | 
            +
                min_lr_rate: Optional[float]
         | 
| 592 | 
            +
             | 
| 593 | 
            +
             | 
| 594 | 
            +
            def make_defaults(model_family: str) -> Tuple[str, str]:
         | 
| 595 | 
            +
                ts = datetime.now().strftime("%Y%m%d_%H%M%S")
         | 
| 596 | 
            +
                family_slug = "gpt-oss" if model_family == "GPT-OSS" else "smollm3"
         | 
| 597 | 
            +
                exp = f"smolfactory-{family_slug}_{ts}"
         | 
| 598 | 
            +
                repo_short = f"smolfactory-{datetime.now().strftime('%Y%m%d')}"
         | 
| 599 | 
            +
                return exp, repo_short
         | 
| 600 | 
            +
             | 
| 601 | 
            +
             | 
| 602 | 
            +
            def run_pipeline(params: PipelineInputs) -> Generator[str, None, None]:
         | 
| 603 | 
            +
                # Tokens from environment
         | 
| 604 | 
            +
                write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
         | 
| 605 | 
            +
                read_token = os.environ.get("HF_READ_TOKEN")
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                if not write_token:
         | 
| 608 | 
            +
                    yield "❌ HF_WRITE_TOKEN (or HF_TOKEN) is not set in the environment."
         | 
| 609 | 
            +
                    return
         | 
| 610 | 
            +
             | 
| 611 | 
            +
                # Resolve username
         | 
| 612 | 
            +
                username = get_username_from_token(write_token) or os.environ.get("HF_USERNAME")
         | 
| 613 | 
            +
                if not username:
         | 
| 614 | 
            +
                    yield "❌ Could not resolve Hugging Face username from token."
         | 
| 615 | 
            +
                    return
         | 
| 616 | 
            +
                yield f"✅ Authenticated as: {username}"
         | 
| 617 | 
            +
             | 
| 618 | 
            +
                # Compute Trackio URL if applicable
         | 
| 619 | 
            +
                trackio_url: Optional[str] = None
         | 
| 620 | 
            +
                if params.monitoring_mode != "none" and params.trackio_space_name:
         | 
| 621 | 
            +
                    trackio_url = f"https://huggingface.co/spaces/{username}/{params.trackio_space_name}"
         | 
| 622 | 
            +
                    yield f"Trackio Space URL: {trackio_url}"
         | 
| 623 | 
            +
             | 
| 624 | 
            +
                # Decide space deploy token per monitoring mode
         | 
| 625 | 
            +
                space_deploy_token = write_token if params.monitoring_mode in ("both", "trackio") else (read_token or write_token)
         | 
| 626 | 
            +
             | 
| 627 | 
            +
                # Dataset repo setup
         | 
| 628 | 
            +
                dataset_repo = f"{username}/trackio-experiments"
         | 
| 629 | 
            +
                if params.create_dataset_repo and params.monitoring_mode != "none":
         | 
| 630 | 
            +
                    yield f"Creating/ensuring dataset repo exists: {dataset_repo}"
         | 
| 631 | 
            +
                    rid, ok, msg = ensure_dataset_repo(username, "trackio-experiments", write_token)
         | 
| 632 | 
            +
                    yield ("✅ " if ok else "⚠️ ") + msg
         | 
| 633 | 
            +
                    dataset_repo = rid
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                # Resolve config file and model name
         | 
| 636 | 
            +
                conf_map = get_config_map(params.model_family)
         | 
| 637 | 
            +
                if params.config_choice not in conf_map:
         | 
| 638 | 
            +
                    yield f"❌ Unknown config choice: {params.config_choice}"
         | 
| 639 | 
            +
                    return
         | 
| 640 | 
            +
                config_file = PROJECT_ROOT / conf_map[params.config_choice]["config_file"]
         | 
| 641 | 
            +
                base_model_fallback = conf_map[params.config_choice]["default_model"]
         | 
| 642 | 
            +
                if not config_file.exists():
         | 
| 643 | 
            +
                    yield f"❌ Config file not found: {config_file}"
         | 
| 644 | 
            +
                    return
         | 
| 645 | 
            +
                cfg_obj = import_config_object(config_file)
         | 
| 646 | 
            +
                base_model = getattr(cfg_obj, "model_name", base_model_fallback) if cfg_obj else base_model_fallback
         | 
| 647 | 
            +
                dataset_name = getattr(cfg_obj, "dataset_name", None) if cfg_obj else None
         | 
| 648 | 
            +
                batch_size = getattr(cfg_obj, "batch_size", None) if cfg_obj else None
         | 
| 649 | 
            +
                learning_rate = getattr(cfg_obj, "learning_rate", None) if cfg_obj else None
         | 
| 650 | 
            +
                max_seq_length = getattr(cfg_obj, "max_seq_length", None) if cfg_obj else None
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                # Prepare env for subprocesses
         | 
| 653 | 
            +
                env = os.environ.copy()
         | 
| 654 | 
            +
                env["HF_TOKEN"] = write_token
         | 
| 655 | 
            +
                env["HUGGING_FACE_HUB_TOKEN"] = write_token
         | 
| 656 | 
            +
                env["HF_USERNAME"] = username
         | 
| 657 | 
            +
                env["TRACKIO_DATASET_REPO"] = dataset_repo
         | 
| 658 | 
            +
                env["MONITORING_MODE"] = params.monitoring_mode
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                # Optional Trackio Space deployment
         | 
| 661 | 
            +
                if params.deploy_trackio_space and params.monitoring_mode != "none" and params.trackio_space_name:
         | 
| 662 | 
            +
                    yield f"\n=== Deploying Trackio Space: {params.trackio_space_name} ==="
         | 
| 663 | 
            +
                    # deploy_trackio_space.py expects: space_name, token, git_email, git_name, dataset_repo
         | 
| 664 | 
            +
                    args = [
         | 
| 665 | 
            +
                        str(PROJECT_ROOT / "scripts/trackio_tonic/deploy_trackio_space.py"),
         | 
| 666 | 
            +
                        params.trackio_space_name,
         | 
| 667 | 
            +
                        space_deploy_token,
         | 
| 668 | 
            +
                        f"{username}@users.noreply.hf.co",
         | 
| 669 | 
            +
                        username,
         | 
| 670 | 
            +
                        dataset_repo,
         | 
| 671 | 
            +
                    ]
         | 
| 672 | 
            +
                    for line in run_command_stream(args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
         | 
| 673 | 
            +
                        yield line
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                # Training output directory
         | 
| 676 | 
            +
                out_dir = PROJECT_ROOT / "outputs" / f"{params.experiment_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
         | 
| 677 | 
            +
                out_dir.mkdir(parents=True, exist_ok=True)
         | 
| 678 | 
            +
                yield f"\nOutput directory: {out_dir}"
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                # Scheduler overrides (GPT-OSS only)
         | 
| 681 | 
            +
                if params.model_family == "GPT-OSS" and params.scheduler_override:
         | 
| 682 | 
            +
                    env["GPT_OSS_SCHEDULER"] = params.scheduler_override
         | 
| 683 | 
            +
                    if params.min_lr is not None:
         | 
| 684 | 
            +
                        env["GPT_OSS_MIN_LR"] = str(params.min_lr)
         | 
| 685 | 
            +
                    if params.min_lr_rate is not None:
         | 
| 686 | 
            +
                        env["GPT_OSS_MIN_LR_RATE"] = str(params.min_lr_rate)
         | 
| 687 | 
            +
             | 
| 688 | 
            +
                # Start training
         | 
| 689 | 
            +
                yield f"\n=== Starting Training ({params.model_family}) ==="
         | 
| 690 | 
            +
                if params.model_family == "GPT-OSS":
         | 
| 691 | 
            +
                    args = [
         | 
| 692 | 
            +
                        str(PROJECT_ROOT / "scripts/training/train_gpt_oss.py"),
         | 
| 693 | 
            +
                        "--config", str(config_file),
         | 
| 694 | 
            +
                        "--experiment-name", params.experiment_name,
         | 
| 695 | 
            +
                        "--output-dir", str(out_dir),
         | 
| 696 | 
            +
                        "--trackio-url", trackio_url or "",
         | 
| 697 | 
            +
                        "--trainer-type", params.trainer_type.lower(),
         | 
| 698 | 
            +
                    ]
         | 
| 699 | 
            +
                else:
         | 
| 700 | 
            +
                    args = [
         | 
| 701 | 
            +
                        str(PROJECT_ROOT / "scripts/training/train.py"),
         | 
| 702 | 
            +
                        "--config", str(config_file),
         | 
| 703 | 
            +
                        "--experiment-name", params.experiment_name,
         | 
| 704 | 
            +
                        "--output-dir", str(out_dir),
         | 
| 705 | 
            +
                        "--trackio-url", trackio_url or "",
         | 
| 706 | 
            +
                        "--trainer-type", params.trainer_type.lower(),
         | 
| 707 | 
            +
                    ]
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                # Stream training logs
         | 
| 710 | 
            +
                train_failed = False
         | 
| 711 | 
            +
                for line in run_command_stream(args, env):
         | 
| 712 | 
            +
                    yield line
         | 
| 713 | 
            +
                    if line.strip().startswith("[exit_code=") and not line.strip().endswith("[exit_code=0]"):
         | 
| 714 | 
            +
                        train_failed = True
         | 
| 715 | 
            +
                if train_failed:
         | 
| 716 | 
            +
                    yield "❌ Training failed. Aborting remaining steps."
         | 
| 717 | 
            +
                    return
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                # Push to Hub
         | 
| 720 | 
            +
                if params.push_to_hub:
         | 
| 721 | 
            +
                    yield "\n=== Pushing Model to Hugging Face Hub ==="
         | 
| 722 | 
            +
                    repo_name = f"{username}/{params.repo_short}"
         | 
| 723 | 
            +
                    if params.model_family == "GPT-OSS":
         | 
| 724 | 
            +
                        push_args = [
         | 
| 725 | 
            +
                            str(PROJECT_ROOT / "scripts/model_tonic/push_gpt_oss_to_huggingface.py"),
         | 
| 726 | 
            +
                            str(out_dir),
         | 
| 727 | 
            +
                            repo_name,
         | 
| 728 | 
            +
                            "--token", write_token,
         | 
| 729 | 
            +
                            "--trackio-url", trackio_url or "",
         | 
| 730 | 
            +
                            "--experiment-name", params.experiment_name,
         | 
| 731 | 
            +
                            "--dataset-repo", dataset_repo,
         | 
| 732 | 
            +
                            "--author-name", params.author_name or username,
         | 
| 733 | 
            +
                            "--model-description", params.model_description,
         | 
| 734 | 
            +
                            "--training-config-type", params.config_choice,
         | 
| 735 | 
            +
                            "--model-name", base_model,
         | 
| 736 | 
            +
                        ]
         | 
| 737 | 
            +
                        if dataset_name:
         | 
| 738 | 
            +
                            push_args += ["--dataset-name", str(dataset_name)]
         | 
| 739 | 
            +
                        if batch_size is not None:
         | 
| 740 | 
            +
                            push_args += ["--batch-size", str(batch_size)]
         | 
| 741 | 
            +
                        if learning_rate is not None:
         | 
| 742 | 
            +
                            push_args += ["--learning-rate", str(learning_rate)]
         | 
| 743 | 
            +
                        if max_seq_length is not None:
         | 
| 744 | 
            +
                            push_args += ["--max-seq-length", str(max_seq_length)]
         | 
| 745 | 
            +
                        push_args += ["--trainer-type", params.trainer_type]
         | 
| 746 | 
            +
                    else:
         | 
| 747 | 
            +
                        push_args = [
         | 
| 748 | 
            +
                            str(PROJECT_ROOT / "scripts/model_tonic/push_to_huggingface.py"),
         | 
| 749 | 
            +
                            str(out_dir),
         | 
| 750 | 
            +
                            repo_name,
         | 
| 751 | 
            +
                            "--token", write_token,
         | 
| 752 | 
            +
                            "--trackio-url", trackio_url or "",
         | 
| 753 | 
            +
                            "--experiment-name", params.experiment_name,
         | 
| 754 | 
            +
                            "--dataset-repo", dataset_repo,
         | 
| 755 | 
            +
                            "--author-name", params.author_name or username,
         | 
| 756 | 
            +
                            "--model-description", params.model_description,
         | 
| 757 | 
            +
                            "--training-config-type", params.config_choice,
         | 
| 758 | 
            +
                            "--model-name", base_model,
         | 
| 759 | 
            +
                        ]
         | 
| 760 | 
            +
                        if dataset_name:
         | 
| 761 | 
            +
                            push_args += ["--dataset-name", str(dataset_name)]
         | 
| 762 | 
            +
                        if batch_size is not None:
         | 
| 763 | 
            +
                            push_args += ["--batch-size", str(batch_size)]
         | 
| 764 | 
            +
                        if learning_rate is not None:
         | 
| 765 | 
            +
                            push_args += ["--learning-rate", str(learning_rate)]
         | 
| 766 | 
            +
                        if max_seq_length is not None:
         | 
| 767 | 
            +
                            push_args += ["--max-seq-length", str(max_seq_length)]
         | 
| 768 | 
            +
                        push_args += ["--trainer-type", params.trainer_type]
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                    for line in run_command_stream(push_args, env):
         | 
| 771 | 
            +
                        yield line
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                # Switch Space token to read-only (security)
         | 
| 774 | 
            +
                if params.switch_to_read_after and params.monitoring_mode in ("both", "trackio") and params.trackio_space_name and read_token:
         | 
| 775 | 
            +
                    yield "\n=== Switching Trackio Space HF_TOKEN to READ token ==="
         | 
| 776 | 
            +
                    space_id = f"{username}/{params.trackio_space_name}"
         | 
| 777 | 
            +
                    sw_args = [
         | 
| 778 | 
            +
                        str(PROJECT_ROOT / "scripts/trackio_tonic/switch_to_read_token.py"),
         | 
| 779 | 
            +
                        space_id,
         | 
| 780 | 
            +
                        read_token,
         | 
| 781 | 
            +
                        write_token,
         | 
| 782 | 
            +
                    ]
         | 
| 783 | 
            +
                    for line in run_command_stream(sw_args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
         | 
| 784 | 
            +
                        yield line
         | 
| 785 | 
            +
                elif params.switch_to_read_after and not read_token:
         | 
| 786 | 
            +
                    yield "⚠️ HF_READ_TOKEN not set; skipping token switch."
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                # Final summary
         | 
| 789 | 
            +
                yield "\n🎉 Pipeline completed."
         | 
| 790 | 
            +
                if params.monitoring_mode != "none" and trackio_url:
         | 
| 791 | 
            +
                    yield f"Trackio: {trackio_url}"
         | 
| 792 | 
            +
                yield f"Model repo (if pushed): https://huggingface.co/{username}/{params.repo_short}"
         | 
| 793 | 
            +
                yield f"Outputs: {out_dir}"
         | 
| 794 | 
            +
             | 
| 795 | 
            +
             | 
| 796 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 797 | 
            +
            # Gradio UI
         | 
| 798 | 
            +
            # --------------------------------------------------------------------------------------
         | 
| 799 | 
            +
             | 
| 800 | 
            +
            MODEL_FAMILIES = ["SmolLM3", "GPT-OSS"]
         | 
| 801 | 
            +
            TRAINER_CHOICES = ["SFT", "DPO"]
         | 
| 802 | 
            +
            MONITORING_CHOICES = ["both", "trackio", "dataset", "none"]
         | 
| 803 | 
            +
            SCHEDULER_CHOICES = [None, "linear", "cosine", "cosine_with_min_lr", "constant"]
         | 
| 804 | 
            +
             | 
| 805 | 
            +
             | 
| 806 | 
            +
            def ui_defaults(family: str) -> Tuple[str, str, str, str]:
         | 
| 807 | 
            +
                exp, repo_short = make_defaults(family)
         | 
| 808 | 
            +
                default_desc = (
         | 
| 809 | 
            +
                    "A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
         | 
| 810 | 
            +
                    if family == "GPT-OSS"
         | 
| 811 | 
            +
                    else "A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks."
         | 
| 812 | 
            +
                )
         | 
| 813 | 
            +
                trackio_space_name = f"trackio-monitoring-{datetime.now().strftime('%Y%m%d')}"
         | 
| 814 | 
            +
                return exp, repo_short, default_desc, trackio_space_name
         | 
| 815 | 
            +
             | 
| 816 | 
            +
             | 
| 817 | 
            +
            def on_family_change(family: str) -> Tuple[list[str], str, str, str, str]:
         | 
| 818 | 
            +
                confs = list(get_config_map(family).keys())
         | 
| 819 | 
            +
                exp, repo_short, desc, space = ui_defaults(family)
         | 
| 820 | 
            +
                return confs, confs[0] if confs else "", exp, repo_short, desc
         | 
| 821 | 
            +
             | 
| 822 | 
            +
             | 
| 823 | 
            +
            def start_pipeline(
         | 
| 824 | 
            +
                model_family: str,
         | 
| 825 | 
            +
                config_choice: str,
         | 
| 826 | 
            +
                trainer_type: str,
         | 
| 827 | 
            +
                monitoring_mode: str,
         | 
| 828 | 
            +
                experiment_name: str,
         | 
| 829 | 
            +
                repo_short: str,
         | 
| 830 | 
            +
                author_name: str,
         | 
| 831 | 
            +
                model_description: str,
         | 
| 832 | 
            +
                trackio_space_name: str,
         | 
| 833 | 
            +
                deploy_trackio_space: bool,
         | 
| 834 | 
            +
                create_dataset_repo: bool,
         | 
| 835 | 
            +
                push_to_hub: bool,
         | 
| 836 | 
            +
                switch_to_read_after: bool,
         | 
| 837 | 
            +
                scheduler_override: Optional[str],
         | 
| 838 | 
            +
                min_lr: Optional[float],
         | 
| 839 | 
            +
                min_lr_rate: Optional[float],
         | 
| 840 | 
            +
            ) -> Generator[str, None, None]:
         | 
| 841 | 
            +
                try:
         | 
| 842 | 
            +
                    params = PipelineInputs(
         | 
| 843 | 
            +
                        model_family=model_family,
         | 
| 844 | 
            +
                        config_choice=config_choice,
         | 
| 845 | 
            +
                        trainer_type=trainer_type,
         | 
| 846 | 
            +
                        monitoring_mode=monitoring_mode,
         | 
| 847 | 
            +
                        experiment_name=experiment_name,
         | 
| 848 | 
            +
                        repo_short=repo_short,
         | 
| 849 | 
            +
                        author_name=author_name,
         | 
| 850 | 
            +
                        model_description=model_description,
         | 
| 851 | 
            +
                        trackio_space_name=trackio_space_name or None,
         | 
| 852 | 
            +
                        deploy_trackio_space=deploy_trackio_space,
         | 
| 853 | 
            +
                        create_dataset_repo=create_dataset_repo,
         | 
| 854 | 
            +
                        push_to_hub=push_to_hub,
         | 
| 855 | 
            +
                        switch_to_read_after=switch_to_read_after,
         | 
| 856 | 
            +
                        scheduler_override=(scheduler_override or None),
         | 
| 857 | 
            +
                        min_lr=min_lr,
         | 
| 858 | 
            +
                        min_lr_rate=min_lr_rate,
         | 
| 859 | 
            +
                    )
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                    # Show token presence
         | 
| 862 | 
            +
                    write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
         | 
| 863 | 
            +
                    read_token = os.environ.get("HF_READ_TOKEN")
         | 
| 864 | 
            +
                    yield f"HF_WRITE_TOKEN: {mask_token(write_token)}"
         | 
| 865 | 
            +
                    yield f"HF_READ_TOKEN:  {mask_token(read_token)}"
         | 
| 866 | 
            +
             | 
| 867 | 
            +
                    # Run the orchestrated pipeline
         | 
| 868 | 
            +
                    for line in run_pipeline(params):
         | 
| 869 | 
            +
                        yield line
         | 
| 870 | 
            +
                        # Small delay for smoother streaming
         | 
| 871 | 
            +
                        time.sleep(0.01)
         | 
| 872 | 
            +
                except Exception as e:
         | 
| 873 | 
            +
                    yield f"❌ Error: {e}"
         | 
| 874 | 
            +
                    tb = traceback.format_exc(limit=2)
         | 
| 875 | 
            +
                    yield tb
         | 
| 876 | 
            +
             | 
| 877 | 
            +
             | 
| 878 | 
            +
            with gr.Blocks(title="SmolLM3 / GPT-OSS Fine-tuning Pipeline") as demo:
         | 
| 879 | 
            +
                # GPU/driver detection banner
         | 
| 880 | 
            +
                has_gpu, gpu_msg = detect_nvidia_driver()
         | 
| 881 | 
            +
                if has_gpu:
         | 
| 882 | 
            +
                    gr.Markdown(f"""
         | 
| 883 | 
            +
                    **SmolLM3 / GPT-OSS Fine-tuning Pipeline**
         | 
| 884 | 
            +
                    - {gpu_msg} — training is available on this runtime.
         | 
| 885 | 
            +
                    - Reads tokens from environment: `HF_WRITE_TOKEN` (required), `HF_READ_TOKEN` (optional)
         | 
| 886 | 
            +
                    - Select a config and run training; optionally deploy Trackio and push to Hub
         | 
| 887 | 
            +
                    """)
         | 
| 888 | 
            +
                else:
         | 
| 889 | 
            +
                    gr.Markdown(f"""
         | 
| 890 | 
            +
                    **SmolLM3 / GPT-OSS Fine-tuning Pipeline**
         | 
| 891 | 
            +
                    - {duplicate_space_hint()}
         | 
| 892 | 
            +
                    - Reads tokens from environment: `HF_WRITE_TOKEN` (required), `HF_READ_TOKEN` (optional)
         | 
| 893 | 
            +
                    - You can still configure and push, but training requires a GPU runtime.
         | 
| 894 | 
            +
                    """)
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                with gr.Row():
         | 
| 897 | 
            +
                    model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="Model family")
         | 
| 898 | 
            +
                    trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="Trainer type")
         | 
| 899 | 
            +
                    monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="both", label="Monitoring mode")
         | 
| 900 | 
            +
             | 
| 901 | 
            +
                config_choice = gr.Dropdown(choices=list(get_config_map("SmolLM3").keys()), value="Basic Training", label="Training configuration")
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")
         | 
| 904 | 
            +
                with gr.Row():
         | 
| 905 | 
            +
                    experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
         | 
| 906 | 
            +
                    repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
         | 
| 907 | 
            +
             | 
| 908 | 
            +
                with gr.Row():
         | 
| 909 | 
            +
                    author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
         | 
| 910 | 
            +
                    model_description = gr.Textbox(value=desc_default, label="Model description")
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                with gr.Row():
         | 
| 913 | 
            +
                    trackio_space_name = gr.Textbox(value=trackio_space_default, label="Trackio Space name (used when monitoring != none)")
         | 
| 914 | 
            +
                    deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space")
         | 
| 915 | 
            +
                    create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo")
         | 
| 916 | 
            +
             | 
| 917 | 
            +
                with gr.Row():
         | 
| 918 | 
            +
                    push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
         | 
| 919 | 
            +
                    switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")
         | 
| 920 | 
            +
             | 
| 921 | 
            +
                with gr.Tabs():
         | 
| 922 | 
            +
                    with gr.Tab("Run"):
         | 
| 923 | 
            +
                        with gr.Row():
         | 
| 924 | 
            +
                            model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="Model family")
         | 
| 925 | 
            +
                            trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="Trainer type")
         | 
| 926 | 
            +
                            monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="both", label="Monitoring mode")
         | 
| 927 | 
            +
             | 
| 928 | 
            +
                        config_choice = gr.Dropdown(choices=list(get_config_map("SmolLM3").keys()), value="Basic Training", label="Training configuration")
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                        exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")
         | 
| 931 | 
            +
                        with gr.Row():
         | 
| 932 | 
            +
                            experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
         | 
| 933 | 
            +
                            repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
         | 
| 934 | 
            +
             | 
| 935 | 
            +
                        with gr.Row():
         | 
| 936 | 
            +
                            author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
         | 
| 937 | 
            +
                            model_description = gr.Textbox(value=desc_default, label="Model description")
         | 
| 938 | 
            +
             | 
| 939 | 
            +
                        with gr.Row():
         | 
| 940 | 
            +
                            trackio_space_name = gr.Textbox(value=trackio_space_default, label="Trackio Space name (used when monitoring != none)")
         | 
| 941 | 
            +
                            deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space")
         | 
| 942 | 
            +
                            create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo")
         | 
| 943 | 
            +
             | 
| 944 | 
            +
                        with gr.Row():
         | 
| 945 | 
            +
                            push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
         | 
| 946 | 
            +
                            switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                        gr.Markdown("### Medical SFT (GPT-OSS o1)")
         | 
| 949 | 
            +
                        gr.Markdown("Configure GPT-OSS Medical o1 SFT (FreedomIntelligence/medical-o1-reasoning-SFT)")
         | 
| 950 | 
            +
                        med_dataset_config = gr.Dropdown(choices=["en", "en_mix", "zh", "zh_mix"], value="en", label="Dataset config")
         | 
| 951 | 
            +
                        med_system = gr.Textbox(value="You are GPT-Tonic, a large language model trained by TonicAI.", label="System message", lines=2)
         | 
| 952 | 
            +
                        med_developer = gr.Textbox(value="You are are GPT-Tonic, an intelligent assistant that always answers health-related queries scientifically.", label="Developer message", lines=3)
         | 
| 953 | 
            +
                        with gr.Row():
         | 
| 954 | 
            +
                            med_epochs = gr.Number(value=2.0, precision=2, label="Epochs")
         | 
| 955 | 
            +
                            med_bs = gr.Number(value=4, precision=0, label="Batch size")
         | 
| 956 | 
            +
                            med_gas = gr.Number(value=4, precision=0, label="Grad accumulation")
         | 
| 957 | 
            +
                            med_lr = gr.Number(value=2e-4, precision=6, label="Learning rate")
         | 
| 958 | 
            +
                            med_msl = gr.Number(value=2048, precision=0, label="Max seq length")
         | 
| 959 | 
            +
                        med_generate = gr.Button("Generate Medical Config")
         | 
| 960 | 
            +
                        med_status = gr.Textbox(label="Generated config path", interactive=False)
         | 
| 961 | 
            +
             | 
| 962 | 
            +
                        logs = gr.Textbox(value="", label="Logs", lines=20)
         | 
| 963 | 
            +
                        start_btn = gr.Button("Run Pipeline")
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                    with gr.Tab("Advanced Config"):
         | 
| 966 | 
            +
                        with gr.Accordion("GPT-OSS Scheduler Overrides", open=False):
         | 
| 967 | 
            +
                            scheduler_override = gr.Dropdown(choices=[c for c in SCHEDULER_CHOICES if c is not None], value=None, allow_custom_value=True, label="Scheduler override")
         | 
| 968 | 
            +
                            min_lr = gr.Number(value=None, precision=6, label="min_lr (when cosine_with_min_lr)")
         | 
| 969 | 
            +
                            min_lr_rate = gr.Number(value=None, precision=6, label="min_lr_rate (when cosine_with_min_lr)")
         | 
| 970 | 
            +
             | 
| 971 | 
            +
                        gr.Markdown("### GPT-OSS Custom Dataset")
         | 
| 972 | 
            +
                        with gr.Row():
         | 
| 973 | 
            +
                            cds_dataset = gr.Textbox(value="legmlai/openhermes-fr", label="Dataset name")
         | 
| 974 | 
            +
                            cds_split = gr.Textbox(value="train", label="Split")
         | 
| 975 | 
            +
                            cds_format = gr.Dropdown(choices=["openhermes_fr", "messages", "text", "medical_o1_sft", "custom", "preference"], value="openhermes_fr", label="Format")
         | 
| 976 | 
            +
                        with gr.Row():
         | 
| 977 | 
            +
                            cds_input = gr.Textbox(value="prompt", label="Input field")
         | 
| 978 | 
            +
                            cds_target = gr.Textbox(value="accepted_completion", label="Target field (optional, blank for None)")
         | 
| 979 | 
            +
                        with gr.Row():
         | 
| 980 | 
            +
                            cds_sys = gr.Textbox(value="", label="System message (optional)")
         | 
| 981 | 
            +
                            cds_dev = gr.Textbox(value="", label="Developer message (optional)")
         | 
| 982 | 
            +
                        with gr.Row():
         | 
| 983 | 
            +
                            cds_identity = gr.Textbox(value="You are GPT-Tonic, a large language model trained by TonicAI.", label="Model identity (chat_template_kwargs.model_identity)")
         | 
| 984 | 
            +
                        with gr.Row():
         | 
| 985 | 
            +
                            cds_max_samples = gr.Number(value=None, precision=0, label="Max samples (optional)")
         | 
| 986 | 
            +
                            cds_min_len = gr.Number(value=10, precision=0, label="Min length")
         | 
| 987 | 
            +
                            cds_max_len = gr.Number(value=None, precision=0, label="Max length (optional)")
         | 
| 988 | 
            +
                        gr.Markdown("#### Training Hyperparameters")
         | 
| 989 | 
            +
                        with gr.Row():
         | 
| 990 | 
            +
                            cds_epochs = gr.Number(value=1.0, precision=2, label="Epochs")
         | 
| 991 | 
            +
                            cds_bs = gr.Number(value=4, precision=0, label="Batch size")
         | 
| 992 | 
            +
                            cds_gas = gr.Number(value=4, precision=0, label="Grad accumulation")
         | 
| 993 | 
            +
                            cds_lr = gr.Number(value=2e-4, precision=6, label="Learning rate")
         | 
| 994 | 
            +
                            cds_minlr = gr.Number(value=2e-5, precision=6, label="Min LR")
         | 
| 995 | 
            +
                        with gr.Row():
         | 
| 996 | 
            +
                            cds_wd = gr.Number(value=0.01, precision=6, label="Weight decay")
         | 
| 997 | 
            +
                            cds_warm = gr.Number(value=0.03, precision=6, label="Warmup ratio")
         | 
| 998 | 
            +
                            cds_msl = gr.Number(value=2048, precision=0, label="Max seq length")
         | 
| 999 | 
            +
                        gr.Markdown("#### LoRA / Precision / Quantization / Perf")
         | 
| 1000 | 
            +
                        with gr.Row():
         | 
| 1001 | 
            +
                            cds_lora_r = gr.Number(value=16, precision=0, label="LoRA r")
         | 
| 1002 | 
            +
                            cds_lora_alpha = gr.Number(value=32, precision=0, label="LoRA alpha")
         | 
| 1003 | 
            +
                            cds_lora_dropout = gr.Number(value=0.05, precision=4, label="LoRA dropout")
         | 
| 1004 | 
            +
                        with gr.Row():
         | 
| 1005 | 
            +
                            cds_precision = gr.Dropdown(choices=["bf16", "fp16", "fp32"], value="bf16", label="Mixed precision")
         | 
| 1006 | 
            +
                            cds_workers = gr.Number(value=4, precision=0, label="Data workers")
         | 
| 1007 | 
            +
                            cds_quant = gr.Dropdown(choices=["mxfp4", "bnb4", "none"], value="mxfp4", label="Quantization")
         | 
| 1008 | 
            +
                        with gr.Row():
         | 
| 1009 | 
            +
                            cds_mgn = gr.Number(value=1.0, precision=4, label="Max grad norm")
         | 
| 1010 | 
            +
                            cds_log_steps = gr.Number(value=10, precision=0, label="Logging steps")
         | 
| 1011 | 
            +
                            cds_eval_steps = gr.Number(value=100, precision=0, label="Eval steps")
         | 
| 1012 | 
            +
                            cds_save_steps = gr.Number(value=500, precision=0, label="Save steps")
         | 
| 1013 | 
            +
                        cds_generate = gr.Button("Generate GPT-OSS Custom Config")
         | 
| 1014 | 
            +
                        cds_status = gr.Textbox(label="Generated config path", interactive=False)
         | 
| 1015 | 
            +
             | 
| 1016 | 
            +
                        gr.Markdown("### SmolLM3 Custom Configuration")
         | 
| 1017 | 
            +
                        with gr.Row():
         | 
| 1018 | 
            +
                            sm_model = gr.Textbox(value="HuggingFaceTB/SmolLM3-3B", label="Model name")
         | 
| 1019 | 
            +
                            sm_dataset = gr.Textbox(value="legmlai/openhermes-fr", label="Dataset (optional; leave blank for local)")
         | 
| 1020 | 
            +
                        with gr.Row():
         | 
| 1021 | 
            +
                            sm_msl = gr.Number(value=4096, precision=0, label="Max seq length")
         | 
| 1022 | 
            +
                            sm_bs = gr.Number(value=2, precision=0, label="Batch size")
         | 
| 1023 | 
            +
                            sm_gas = gr.Number(value=8, precision=0, label="Grad accumulation")
         | 
| 1024 | 
            +
                            sm_lr = gr.Number(value=5e-6, precision=8, label="Learning rate")
         | 
| 1025 | 
            +
                        with gr.Row():
         | 
| 1026 | 
            +
                            sm_save = gr.Number(value=500, precision=0, label="Save steps")
         | 
| 1027 | 
            +
                            sm_eval = gr.Number(value=100, precision=0, label="Eval steps")
         | 
| 1028 | 
            +
                            sm_log = gr.Number(value=10, precision=0, label="Logging steps")
         | 
| 1029 | 
            +
                        with gr.Row():
         | 
| 1030 | 
            +
                            sm_filter = gr.Checkbox(value=False, label="Filter bad entries")
         | 
| 1031 | 
            +
                            sm_in = gr.Textbox(value="prompt", label="Input field")
         | 
| 1032 | 
            +
                            sm_out = gr.Textbox(value="accepted_completion", label="Target field")
         | 
| 1033 | 
            +
                        with gr.Row():
         | 
| 1034 | 
            +
                            sm_sample = gr.Number(value=None, precision=0, label="Sample size (optional)")
         | 
| 1035 | 
            +
                            sm_seed = gr.Number(value=42, precision=0, label="Sample seed")
         | 
| 1036 | 
            +
                            sm_trainer = gr.Dropdown(choices=["SFT", "DPO"], value="SFT", label="Trainer type")
         | 
| 1037 | 
            +
                        sm_generate = gr.Button("Generate SmolLM3 Custom Config")
         | 
| 1038 | 
            +
                        sm_status = gr.Textbox(label="Generated config path", interactive=False)
         | 
| 1039 | 
            +
             | 
| 1040 | 
            +
                logs = gr.Textbox(value="", label="Logs", lines=20)
         | 
| 1041 | 
            +
             | 
| 1042 | 
            +
                start_btn = gr.Button("Run Pipeline")
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
                # Events
         | 
| 1045 | 
            +
                model_family.change(on_family_change, inputs=model_family, outputs=[config_choice, config_choice, experiment_name, repo_short, model_description])
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
                # Generate config handlers
         | 
| 1048 | 
            +
                med_generate.click(
         | 
| 1049 | 
            +
                    lambda dc, sysm, devm, ep, bs, gas, lr, msl: str(
         | 
| 1050 | 
            +
                        generate_medical_o1_config_file(
         | 
| 1051 | 
            +
                            dataset_config=dc,
         | 
| 1052 | 
            +
                            system_message=sysm,
         | 
| 1053 | 
            +
                            developer_message=devm,
         | 
| 1054 | 
            +
                            num_train_epochs=float(ep or 2.0),
         | 
| 1055 | 
            +
                            batch_size=int(bs or 4),
         | 
| 1056 | 
            +
                            gradient_accumulation_steps=int(gas or 4),
         | 
| 1057 | 
            +
                            learning_rate=float(lr or 2e-4),
         | 
| 1058 | 
            +
                            max_seq_length=int(msl or 2048),
         | 
| 1059 | 
            +
                        )
         | 
| 1060 | 
            +
                    ),
         | 
| 1061 | 
            +
                    inputs=[med_dataset_config, med_system, med_developer, med_epochs, med_bs, med_gas, med_lr, med_msl],
         | 
| 1062 | 
            +
                    outputs=[med_status],
         | 
| 1063 | 
            +
                )
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
                cds_generate.click(
         | 
| 1066 | 
            +
                    lambda dname, dsplit, dformat, ifld, tfld, sm, dm, ident, ms, minl, maxl, ep, bs, gas, lr, minlr, wd, warm, msl, lr_, la, ld, prec, nw, q, mgn, logst, evst, savst: str(
         | 
| 1067 | 
            +
                        generate_gpt_oss_custom_config_file(
         | 
| 1068 | 
            +
                            dataset_name=dname,
         | 
| 1069 | 
            +
                            dataset_split=dsplit,
         | 
| 1070 | 
            +
                            dataset_format=dformat,
         | 
| 1071 | 
            +
                            input_field=ifld,
         | 
| 1072 | 
            +
                            target_field=(tfld or None),
         | 
| 1073 | 
            +
                            system_message=sm,
         | 
| 1074 | 
            +
                            developer_message=dm,
         | 
| 1075 | 
            +
                            model_identity=ident,
         | 
| 1076 | 
            +
                            max_samples=(int(ms) if ms is not None else None),
         | 
| 1077 | 
            +
                            min_length=int(minl or 10),
         | 
| 1078 | 
            +
                            max_length=(int(maxl) if maxl is not None else None),
         | 
| 1079 | 
            +
                            num_train_epochs=float(ep or 1.0),
         | 
| 1080 | 
            +
                            batch_size=int(bs or 4),
         | 
| 1081 | 
            +
                            gradient_accumulation_steps=int(gas or 4),
         | 
| 1082 | 
            +
                            learning_rate=float(lr or 2e-4),
         | 
| 1083 | 
            +
                            min_lr=float(minlr or 2e-5),
         | 
| 1084 | 
            +
                            weight_decay=float(wd or 0.01),
         | 
| 1085 | 
            +
                            warmup_ratio=float(warm or 0.03),
         | 
| 1086 | 
            +
                            max_seq_length=int(msl or 2048),
         | 
| 1087 | 
            +
                            lora_r=int(lr_),
         | 
| 1088 | 
            +
                            lora_alpha=int(la),
         | 
| 1089 | 
            +
                            lora_dropout=float(ld),
         | 
| 1090 | 
            +
                            mixed_precision=prec,
         | 
| 1091 | 
            +
                            num_workers=int(nw or 4),
         | 
| 1092 | 
            +
                            quantization_type=q,
         | 
| 1093 | 
            +
                            max_grad_norm=float(mgn or 1.0),
         | 
| 1094 | 
            +
                            logging_steps=int(logst or 10),
         | 
| 1095 | 
            +
                            eval_steps=int(evst or 100),
         | 
| 1096 | 
            +
                            save_steps=int(savst or 500),
         | 
| 1097 | 
            +
                        )
         | 
| 1098 | 
            +
                    ),
         | 
| 1099 | 
            +
                    inputs=[
         | 
| 1100 | 
            +
                        cds_dataset, cds_split, cds_format, cds_input, cds_target, cds_sys, cds_dev, cds_identity,
         | 
| 1101 | 
            +
                        cds_max_samples, cds_min_len, cds_max_len, cds_epochs, cds_bs, cds_gas, cds_lr, cds_minlr, cds_wd,
         | 
| 1102 | 
            +
                        cds_warm, cds_msl, cds_lora_r, cds_lora_alpha, cds_lora_dropout, cds_precision, cds_workers, cds_quant,
         | 
| 1103 | 
            +
                        cds_mgn, cds_log_steps, cds_eval_steps, cds_save_steps
         | 
| 1104 | 
            +
                    ],
         | 
| 1105 | 
            +
                    outputs=[cds_status],
         | 
| 1106 | 
            +
                )
         | 
| 1107 | 
            +
             | 
| 1108 | 
            +
                sm_generate.click(
         | 
| 1109 | 
            +
                    lambda mn, dn, msl, bs, gas, lr, sst, est, lst, fbe, ifld, tfld, ss, seed, tt: str(
         | 
| 1110 | 
            +
                        generate_smollm3_custom_config_file(
         | 
| 1111 | 
            +
                            model_name=mn,
         | 
| 1112 | 
            +
                            dataset_name=(dn or None),
         | 
| 1113 | 
            +
                            max_seq_length=int(msl or 4096),
         | 
| 1114 | 
            +
                            batch_size=int(bs or 2),
         | 
| 1115 | 
            +
                            gradient_accumulation_steps=int(gas or 8),
         | 
| 1116 | 
            +
                            learning_rate=float(lr or 5e-6),
         | 
| 1117 | 
            +
                            save_steps=int(sst or 500),
         | 
| 1118 | 
            +
                            eval_steps=int(est or 100),
         | 
| 1119 | 
            +
                            logging_steps=int(lst or 10),
         | 
| 1120 | 
            +
                            filter_bad_entries=bool(fbe),
         | 
| 1121 | 
            +
                            input_field=ifld,
         | 
| 1122 | 
            +
                            target_field=tfld,
         | 
| 1123 | 
            +
                            sample_size=(int(ss) if ss is not None else None),
         | 
| 1124 | 
            +
                            sample_seed=int(seed or 42),
         | 
| 1125 | 
            +
                            trainer_type=tt,
         | 
| 1126 | 
            +
                        )
         | 
| 1127 | 
            +
                    ),
         | 
| 1128 | 
            +
                    inputs=[
         | 
| 1129 | 
            +
                        sm_model, sm_dataset, sm_msl, sm_bs, sm_gas, sm_lr, sm_save, sm_eval, sm_log,
         | 
| 1130 | 
            +
                        sm_filter, sm_in, sm_out, sm_sample, sm_seed, sm_trainer,
         | 
| 1131 | 
            +
                    ],
         | 
| 1132 | 
            +
                    outputs=[sm_status],
         | 
| 1133 | 
            +
                )
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
                start_btn.click(
         | 
| 1136 | 
            +
                    start_pipeline,
         | 
| 1137 | 
            +
                    inputs=[
         | 
| 1138 | 
            +
                        model_family,
         | 
| 1139 | 
            +
                        config_choice,
         | 
| 1140 | 
            +
                        trainer_type,
         | 
| 1141 | 
            +
                        monitoring_mode,
         | 
| 1142 | 
            +
                        experiment_name,
         | 
| 1143 | 
            +
                        repo_short,
         | 
| 1144 | 
            +
                        author_name,
         | 
| 1145 | 
            +
                        model_description,
         | 
| 1146 | 
            +
                        trackio_space_name,
         | 
| 1147 | 
            +
                        deploy_trackio_space,
         | 
| 1148 | 
            +
                        create_dataset_repo,
         | 
| 1149 | 
            +
                        push_to_hub,
         | 
| 1150 | 
            +
                        switch_to_read_after,
         | 
| 1151 | 
            +
                        scheduler_override,
         | 
| 1152 | 
            +
                        min_lr,
         | 
| 1153 | 
            +
                        min_lr_rate,
         | 
| 1154 | 
            +
                    ],
         | 
| 1155 | 
            +
                    outputs=[logs],
         | 
| 1156 | 
            +
                )
         | 
| 1157 | 
            +
             | 
| 1158 | 
            +
             | 
| 1159 | 
            +
            if __name__ == "__main__":
         | 
| 1160 | 
            +
                # Optional: allow setting server parameters via env
         | 
| 1161 | 
            +
                server_port = int(os.environ.get("INTERFACE_PORT", "7860"))
         | 
| 1162 | 
            +
                server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0")
         | 
| 1163 | 
            +
                demo.queue().launch(server_name=server_name, server_port=server_port)
         | 
| 1164 | 
            +
             | 
| 1165 | 
            +
             | 
    	
        launch.sh
    CHANGED
    
    | @@ -478,6 +478,7 @@ get_custom_dataset_config() { | |
| 478 | 
             
                print_info "💬 Harmony Context (optional)"
         | 
| 479 | 
             
                get_input "System message" "You are GPT-Tonic, a large language model trained by TonicAI." SYSTEM_MESSAGE
         | 
| 480 | 
             
                get_input "Developer message" "You are an intelligent assistant that can answer customer service queries" DEVELOPER_MESSAGE
         | 
|  | |
| 481 |  | 
| 482 | 
             
                # Dataset Filtering Options
         | 
| 483 | 
             
                echo ""
         | 
| @@ -601,6 +602,27 @@ update_enhanced_gpt_oss_config() { | |
| 601 | 
             
                        ;;
         | 
| 602 | 
             
                esac
         | 
| 603 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 604 | 
             
                # Create enhanced config file with all user choices
         | 
| 605 | 
             
                cat > "$CONFIG_FILE" << EOF
         | 
| 606 | 
             
            """
         | 
| @@ -626,11 +648,22 @@ config = GPTOSSEnhancedCustomConfig( | |
| 626 | 
             
                min_length=$MIN_LENGTH,
         | 
| 627 | 
             
                max_length=$(if [ -n "$MAX_LENGTH" ]; then echo "$MAX_LENGTH"; else echo "None"; fi),
         | 
| 628 |  | 
| 629 | 
            -
                #  | 
| 630 | 
            -
                 | 
| 631 | 
            -
                 | 
|  | |
|  | |
| 632 | 
             
                use_harmony_format=True,
         | 
| 633 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 634 | 
             
                # Medical o1 SFT mapping (ignored unless dataset_format == 'medical_o1_sft')
         | 
| 635 | 
             
                question_field=$(if [ -n "$MED_Q_FIELD" ]; then echo "\"$MED_Q_FIELD\""; else echo "\"Question\""; fi),
         | 
| 636 | 
             
                reasoning_field=$(if [ -n "$MED_REASON_FIELD" ]; then echo "\"$MED_REASON_FIELD\""; else echo "\"Complex_CoT\""; fi),
         | 
| @@ -792,7 +825,8 @@ config = SmolLM3Config( | |
| 792 | 
             
                experiment_name="$EXPERIMENT_NAME",
         | 
| 793 |  | 
| 794 | 
             
                # HF Datasets configuration
         | 
| 795 | 
            -
                dataset_repo="$TRACKIO_DATASET_REPO"
         | 
|  | |
| 796 | 
             
            )
         | 
| 797 | 
             
            EOF
         | 
| 798 | 
             
            }
         | 
| @@ -881,6 +915,35 @@ fi | |
| 881 |  | 
| 882 | 
             
            get_training_config "$TRAINING_CONFIG_TYPE"
         | 
| 883 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 884 | 
             
            # 2.3 Set a family-specific default model description for the model card
         | 
| 885 | 
             
            if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then
         | 
| 886 | 
             
                DEFAULT_MODEL_DESCRIPTION="A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
         | 
| @@ -999,12 +1062,16 @@ get_input "Save steps" "500" SAVE_STEPS | |
| 999 | 
             
            get_input "Evaluation steps" "100" EVAL_STEPS
         | 
| 1000 | 
             
            get_input "Logging steps" "10" LOGGING_STEPS
         | 
| 1001 |  | 
| 1002 | 
            -
            # Step 5: Trackio Space configuration
         | 
| 1003 | 
            -
             | 
| 1004 | 
            -
             | 
| 1005 | 
            -
             | 
| 1006 | 
            -
            get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
         | 
| 1007 | 
            -
            TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"
         | 
|  | |
|  | |
|  | |
|  | |
| 1008 |  | 
| 1009 | 
             
            # Step 6: Confirm configuration
         | 
| 1010 | 
             
            print_step "Step 6: Configuration Summary"
         | 
| @@ -1029,6 +1096,7 @@ echo "  Model Repo: $REPO_NAME (auto-generated)" | |
| 1029 | 
             
            echo "  Author: $AUTHOR_NAME"
         | 
| 1030 | 
             
            echo "  Trackio Space: $TRACKIO_URL"
         | 
| 1031 | 
             
            echo "  HF Dataset: $TRACKIO_DATASET_REPO"
         | 
|  | |
| 1032 | 
             
            echo ""
         | 
| 1033 |  | 
| 1034 | 
             
            read -p "Proceed with this configuration? (y/N): " confirm
         | 
| @@ -1153,57 +1221,62 @@ get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME | |
| 1153 | 
             
            print_info "Model description will be used in the model card and repository."
         | 
| 1154 | 
             
            get_input "Model description" "$DEFAULT_MODEL_DESCRIPTION" MODEL_DESCRIPTION
         | 
| 1155 |  | 
| 1156 | 
            -
            # Step 9: Deploy Trackio Space (automated)
         | 
| 1157 | 
            -
             | 
| 1158 | 
            -
             | 
| 1159 | 
            -
             | 
| 1160 | 
            -
            cd scripts/trackio_tonic
         | 
| 1161 | 
            -
             | 
| 1162 | 
            -
            print_info " | 
| 1163 | 
            -
            print_info " | 
| 1164 | 
            -
             | 
| 1165 | 
            -
            print_info " | 
| 1166 | 
            -
             | 
| 1167 | 
            -
             | 
| 1168 | 
            -
             | 
| 1169 | 
            -
             | 
| 1170 | 
            -
            export  | 
| 1171 | 
            -
             | 
| 1172 | 
            -
             | 
| 1173 | 
            -
             | 
| 1174 | 
            -
             | 
| 1175 | 
            -
            print_status "Trackio Space deployed: $TRACKIO_URL"
         | 
| 1176 | 
            -
             | 
| 1177 | 
            -
             | 
| 1178 | 
            -
             | 
| 1179 | 
            -
            echo "=================================="
         | 
| 1180 | 
            -
             | 
| 1181 | 
            -
            cd ../dataset_tonic
         | 
| 1182 | 
            -
            print_info "Setting up HF Dataset with automated features..."
         | 
| 1183 | 
            -
            print_info "Username will be auto-detected from token"
         | 
| 1184 | 
            -
            print_info "Dataset repository: $TRACKIO_DATASET_REPO"
         | 
| 1185 | 
            -
             | 
| 1186 | 
            -
            # Ensure environment variables are available for the script
         | 
| 1187 | 
            -
            export HF_TOKEN="$HF_TOKEN"
         | 
| 1188 | 
            -
            export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
         | 
| 1189 | 
            -
            export HF_USERNAME="$HF_USERNAME"
         | 
| 1190 | 
            -
             | 
| 1191 | 
            -
            python setup_hf_dataset.py "$HF_TOKEN"
         | 
| 1192 | 
            -
             | 
| 1193 | 
            -
            # Step 11: Configure Trackio (automated)
         | 
| 1194 | 
            -
            print_step "Step 11: Configuring Trackio"
         | 
| 1195 | 
            -
            echo "================================="
         | 
| 1196 | 
            -
             | 
| 1197 | 
            -
            cd ../trackio_tonic
         | 
| 1198 | 
            -
            print_info "Configuring Trackio ..."
         | 
| 1199 | 
            -
            print_info "Username will be auto-detected from token"
         | 
| 1200 |  | 
| 1201 | 
            -
             | 
| 1202 | 
            -
             | 
| 1203 | 
            -
             | 
| 1204 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1205 |  | 
| 1206 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1207 |  | 
| 1208 | 
             
            # Step 12: Training Configuration
         | 
| 1209 | 
             
            print_step "Step 12: Training Configuration"
         | 
| @@ -1256,11 +1329,12 @@ print_info "Trackio: $TRACKIO_URL" | |
| 1256 | 
             
            # Ensure environment variables are available for training
         | 
| 1257 | 
             
            export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
         | 
| 1258 | 
             
            export HF_READ_TOKEN="$HF_READ_TOKEN"
         | 
| 1259 | 
            -
            export HF_TOKEN="$ | 
| 1260 | 
            -
            export HUGGING_FACE_HUB_TOKEN="$ | 
| 1261 | 
             
            export HF_USERNAME="$HF_USERNAME"
         | 
| 1262 | 
             
            export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
         | 
| 1263 | 
             
            export OUTPUT_DIR="$OUTPUT_DIR"
         | 
|  | |
| 1264 |  | 
| 1265 | 
             
            # Run the appropriate training script based on model type
         | 
| 1266 | 
             
            if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
         | 
| @@ -1334,32 +1408,31 @@ else | |
| 1334 | 
             
                    --trainer-type "$TRAINER_TYPE"
         | 
| 1335 | 
             
            fi
         | 
| 1336 |  | 
| 1337 | 
            -
            # Step 16.5: Switch Trackio Space to Read Token (Security)
         | 
| 1338 | 
            -
             | 
| 1339 | 
            -
             | 
| 1340 | 
            -
             | 
| 1341 | 
            -
            print_info "Switching Trackio Space HF_TOKEN from write token to read token for security..."
         | 
| 1342 | 
            -
            print_info "This ensures the space can only read datasets, not write to repositories"
         | 
| 1343 | 
            -
             | 
| 1344 | 
            -
            #  | 
| 1345 | 
            -
            export  | 
| 1346 | 
            -
            export  | 
| 1347 | 
            -
             | 
| 1348 | 
            -
             | 
| 1349 | 
            -
             | 
| 1350 | 
            -
             | 
| 1351 | 
            -
             | 
| 1352 | 
            -
             | 
| 1353 | 
            -
             | 
| 1354 | 
            -
             | 
| 1355 | 
            -
             | 
|  | |
|  | |
| 1356 | 
             
            else
         | 
| 1357 | 
            -
                 | 
| 1358 | 
            -
                print_info "You can manually switch the token in your Space settings later"
         | 
| 1359 | 
             
            fi
         | 
| 1360 |  | 
| 1361 | 
            -
            cd ../..
         | 
| 1362 | 
            -
             | 
| 1363 | 
             
            # Step 17: Deploy Demo Space
         | 
| 1364 | 
             
            print_step "Step 17: Deploying Demo Space"
         | 
| 1365 | 
             
            echo "=================================="
         | 
| @@ -1387,7 +1460,8 @@ export HF_USERNAME="$HF_USERNAME" | |
| 1387 | 
             
                    --hf-username "$HF_USERNAME" \
         | 
| 1388 | 
             
                    --model-id "$DEMO_MODEL_ID" \
         | 
| 1389 | 
             
                    --subfolder "$DEMO_SUBFOLDER" \
         | 
| 1390 | 
            -
                    --space-name "${REPO_SHORT}-demo"
         | 
|  | |
| 1391 |  | 
| 1392 | 
             
                if [ $? -eq 0 ]; then
         | 
| 1393 | 
             
                    DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo"
         | 
|  | |
| 478 | 
             
                print_info "💬 Harmony Context (optional)"
         | 
| 479 | 
             
                get_input "System message" "You are GPT-Tonic, a large language model trained by TonicAI." SYSTEM_MESSAGE
         | 
| 480 | 
             
                get_input "Developer message" "You are an intelligent assistant that can answer customer service queries" DEVELOPER_MESSAGE
         | 
| 481 | 
            +
                get_input "Model identity/persona (used in chat_template_kwargs.model_identity)" "You are GPT-Tonic, a large language model trained by TonicAI." MODEL_IDENTITY
         | 
| 482 |  | 
| 483 | 
             
                # Dataset Filtering Options
         | 
| 484 | 
             
                echo ""
         | 
|  | |
| 602 | 
             
                        ;;
         | 
| 603 | 
             
                esac
         | 
| 604 |  | 
| 605 | 
            +
                # Safely serialize free-text fields to valid Python literals
         | 
| 606 | 
            +
                SYSTEM_MESSAGE_LITERAL=$(SYSTEM_MESSAGE="$SYSTEM_MESSAGE" python - <<'PY'
         | 
| 607 | 
            +
            import json, os
         | 
| 608 | 
            +
            v = os.environ.get('SYSTEM_MESSAGE', '')
         | 
| 609 | 
            +
            print('None' if not v else json.dumps(v))
         | 
| 610 | 
            +
            PY
         | 
| 611 | 
            +
            )
         | 
| 612 | 
            +
                DEVELOPER_MESSAGE_LITERAL=$(DEVELOPER_MESSAGE="$DEVELOPER_MESSAGE" python - <<'PY'
         | 
| 613 | 
            +
            import json, os
         | 
| 614 | 
            +
            v = os.environ.get('DEVELOPER_MESSAGE', '')
         | 
| 615 | 
            +
            print('None' if not v else json.dumps(v))
         | 
| 616 | 
            +
            PY
         | 
| 617 | 
            +
            )
         | 
| 618 | 
            +
                MODEL_IDENTITY_DEFAULT="You are GPT-Tonic, a large language model trained by TonicAI."
         | 
| 619 | 
            +
                MODEL_IDENTITY_LITERAL=$(MODEL_IDENTITY="${MODEL_IDENTITY:-$MODEL_IDENTITY_DEFAULT}" python - <<'PY'
         | 
| 620 | 
            +
            import json, os
         | 
| 621 | 
            +
            v = os.environ.get('MODEL_IDENTITY', '')
         | 
| 622 | 
            +
            print(json.dumps(v))
         | 
| 623 | 
            +
            PY
         | 
| 624 | 
            +
            )
         | 
| 625 | 
            +
             | 
| 626 | 
             
                # Create enhanced config file with all user choices
         | 
| 627 | 
             
                cat > "$CONFIG_FILE" << EOF
         | 
| 628 | 
             
            """
         | 
|  | |
| 648 | 
             
                min_length=$MIN_LENGTH,
         | 
| 649 | 
             
                max_length=$(if [ -n "$MAX_LENGTH" ]; then echo "$MAX_LENGTH"; else echo "None"; fi),
         | 
| 650 |  | 
| 651 | 
            +
                # ============================================================================
         | 
| 652 | 
            +
                # HARMONY CONFIGURATION
         | 
| 653 | 
            +
                # ============================================================================
         | 
| 654 | 
            +
                system_message=$SYSTEM_MESSAGE_LITERAL,
         | 
| 655 | 
            +
                developer_message=$DEVELOPER_MESSAGE_LITERAL,
         | 
| 656 | 
             
                use_harmony_format=True,
         | 
| 657 |  | 
| 658 | 
            +
                chat_template_kwargs={
         | 
| 659 | 
            +
                    "add_generation_prompt": True,
         | 
| 660 | 
            +
                    "tokenize": False,
         | 
| 661 | 
            +
                    "auto_insert_role": True,
         | 
| 662 | 
            +
                    "reasoning_effort": "medium",
         | 
| 663 | 
            +
                    "model_identity": $MODEL_IDENTITY_LITERAL,
         | 
| 664 | 
            +
                    "builtin_tools": [],
         | 
| 665 | 
            +
                },
         | 
| 666 | 
            +
             | 
| 667 | 
             
                # Medical o1 SFT mapping (ignored unless dataset_format == 'medical_o1_sft')
         | 
| 668 | 
             
                question_field=$(if [ -n "$MED_Q_FIELD" ]; then echo "\"$MED_Q_FIELD\""; else echo "\"Question\""; fi),
         | 
| 669 | 
             
                reasoning_field=$(if [ -n "$MED_REASON_FIELD" ]; then echo "\"$MED_REASON_FIELD\""; else echo "\"Complex_CoT\""; fi),
         | 
|  | |
| 825 | 
             
                experiment_name="$EXPERIMENT_NAME",
         | 
| 826 |  | 
| 827 | 
             
                # HF Datasets configuration
         | 
| 828 | 
            +
                dataset_repo="$TRACKIO_DATASET_REPO",
         | 
| 829 | 
            +
                monitoring_mode="$MONITORING_MODE",
         | 
| 830 | 
             
            )
         | 
| 831 | 
             
            EOF
         | 
| 832 | 
             
            }
         | 
|  | |
| 915 |  | 
| 916 | 
             
            get_training_config "$TRAINING_CONFIG_TYPE"
         | 
| 917 |  | 
| 918 | 
            +
            # Step 2.4: Monitoring mode selection
         | 
| 919 | 
            +
            print_step "Step 2.4: Monitoring Mode"
         | 
| 920 | 
            +
            echo "=============================="
         | 
| 921 | 
            +
            echo "Choose how to log your experiment:"
         | 
| 922 | 
            +
            select_option "Select monitoring mode:" \
         | 
| 923 | 
            +
                "Both (Trackio + Dataset)" \
         | 
| 924 | 
            +
                "Trackio only" \
         | 
| 925 | 
            +
                "Dataset only" \
         | 
| 926 | 
            +
                "None (local only)" \
         | 
| 927 | 
            +
                MONITORING_MODE_OPTION
         | 
| 928 | 
            +
             | 
| 929 | 
            +
            case "$MONITORING_MODE_OPTION" in
         | 
| 930 | 
            +
                "Both (Trackio + Dataset)") MONITORING_MODE="both" ;;
         | 
| 931 | 
            +
                "Trackio only") MONITORING_MODE="trackio" ;;
         | 
| 932 | 
            +
                "Dataset only") MONITORING_MODE="dataset" ;;
         | 
| 933 | 
            +
                "None (local only)") MONITORING_MODE="none" ;;
         | 
| 934 | 
            +
                *) MONITORING_MODE="both" ;;
         | 
| 935 | 
            +
            esac
         | 
| 936 | 
            +
             | 
| 937 | 
            +
            # Decide which token to use for the Trackio Space secret
         | 
| 938 | 
            +
            # - dataset: read-only token (Space only needs to read datasets)
         | 
| 939 | 
            +
            # - trackio/both: write token until end of training (Space writes to datasets)
         | 
| 940 | 
            +
            # - none: Space is skipped
         | 
| 941 | 
            +
            if [ "$MONITORING_MODE" = "dataset" ]; then
         | 
| 942 | 
            +
                SPACE_DEPLOY_TOKEN="$HF_READ_TOKEN"
         | 
| 943 | 
            +
            else
         | 
| 944 | 
            +
                SPACE_DEPLOY_TOKEN="$HF_WRITE_TOKEN"
         | 
| 945 | 
            +
            fi
         | 
| 946 | 
            +
             | 
| 947 | 
             
            # 2.3 Set a family-specific default model description for the model card
         | 
| 948 | 
             
            if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then
         | 
| 949 | 
             
                DEFAULT_MODEL_DESCRIPTION="A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
         | 
|  | |
| 1062 | 
             
            get_input "Evaluation steps" "100" EVAL_STEPS
         | 
| 1063 | 
             
            get_input "Logging steps" "10" LOGGING_STEPS
         | 
| 1064 |  | 
| 1065 | 
            +
            # Step 5: Trackio Space configuration (skip when local-only)
         | 
| 1066 | 
            +
            if [ "$MONITORING_MODE" != "none" ]; then
         | 
| 1067 | 
            +
                print_step "Step 5: Trackio Space Configuration"
         | 
| 1068 | 
            +
                echo "======================================"
         | 
| 1069 | 
            +
                get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
         | 
| 1070 | 
            +
                TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"
         | 
| 1071 | 
            +
            else
         | 
| 1072 | 
            +
                TRACKIO_SPACE_NAME=""
         | 
| 1073 | 
            +
                TRACKIO_URL=""
         | 
| 1074 | 
            +
            fi
         | 
| 1075 |  | 
| 1076 | 
             
            # Step 6: Confirm configuration
         | 
| 1077 | 
             
            print_step "Step 6: Configuration Summary"
         | 
|  | |
| 1096 | 
             
            echo "  Author: $AUTHOR_NAME"
         | 
| 1097 | 
             
            echo "  Trackio Space: $TRACKIO_URL"
         | 
| 1098 | 
             
            echo "  HF Dataset: $TRACKIO_DATASET_REPO"
         | 
| 1099 | 
            +
            echo "  Monitoring Mode: $MONITORING_MODE"
         | 
| 1100 | 
             
            echo ""
         | 
| 1101 |  | 
| 1102 | 
             
            read -p "Proceed with this configuration? (y/N): " confirm
         | 
|  | |
| 1221 | 
             
            print_info "Model description will be used in the model card and repository."
         | 
| 1222 | 
             
            get_input "Model description" "$DEFAULT_MODEL_DESCRIPTION" MODEL_DESCRIPTION
         | 
| 1223 |  | 
| 1224 | 
            +
            # Step 9: Deploy Trackio Space (automated, skipped for local-only)
         | 
| 1225 | 
            +
            if [ "$MONITORING_MODE" != "none" ]; then
         | 
| 1226 | 
            +
                print_step "Step 9: Deploying Trackio Space"
         | 
| 1227 | 
            +
                echo "==================================="
         | 
| 1228 | 
            +
                cd scripts/trackio_tonic
         | 
| 1229 | 
            +
                print_info "Deploying Trackio Space ..."
         | 
| 1230 | 
            +
                print_info "Space name: $TRACKIO_SPACE_NAME"
         | 
| 1231 | 
            +
                print_info "Username will be auto-detected from token"
         | 
| 1232 | 
            +
                if [ "$MONITORING_MODE" = "dataset" ]; then
         | 
| 1233 | 
            +
                    print_info "Deploying with READ token (Space will NOT write to datasets)"
         | 
| 1234 | 
            +
                else
         | 
| 1235 | 
            +
                    print_info "Deploying with WRITE token (Space will write to datasets during training)"
         | 
| 1236 | 
            +
                fi
         | 
| 1237 | 
            +
                # Ensure environment variables are available for the script
         | 
| 1238 | 
            +
                export HF_TOKEN="$SPACE_DEPLOY_TOKEN"
         | 
| 1239 | 
            +
                export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN"
         | 
| 1240 | 
            +
                export HF_USERNAME="$HF_USERNAME"
         | 
| 1241 | 
            +
                # Run deployment script with automated features (pass deploy token)
         | 
| 1242 | 
            +
                python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$SPACE_DEPLOY_TOKEN" "$GIT_EMAIL" "$HF_USERNAME" "$TRACKIO_DATASET_REPO"
         | 
| 1243 | 
            +
                print_status "Trackio Space deployed: $TRACKIO_URL"
         | 
| 1244 | 
            +
            else
         | 
| 1245 | 
            +
                print_info "Skipping Trackio Space deployment (monitoring_mode=$MONITORING_MODE)"
         | 
| 1246 | 
            +
            fi
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1247 |  | 
| 1248 | 
            +
            if [ "$MONITORING_MODE" != "none" ]; then
         | 
| 1249 | 
            +
                # Step 10: Setup HF Dataset (automated) — required unless local-only
         | 
| 1250 | 
            +
                print_step "Step 10: Setting up HF Dataset"
         | 
| 1251 | 
            +
                echo "=================================="
         | 
| 1252 | 
            +
                cd ../dataset_tonic
         | 
| 1253 | 
            +
                print_info "Setting up HF Dataset with automated features..."
         | 
| 1254 | 
            +
                print_info "Username will be auto-detected from token"
         | 
| 1255 | 
            +
                print_info "Dataset repository: $TRACKIO_DATASET_REPO"
         | 
| 1256 | 
            +
                # Ensure environment variables are available for the script
         | 
| 1257 | 
            +
                export HF_TOKEN="$HF_WRITE_TOKEN"
         | 
| 1258 | 
            +
                export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
         | 
| 1259 | 
            +
                export HF_USERNAME="$HF_USERNAME"
         | 
| 1260 | 
            +
                python setup_hf_dataset.py "$HF_TOKEN"
         | 
| 1261 | 
            +
            else
         | 
| 1262 | 
            +
                print_info "Skipping HF Dataset setup (monitoring_mode=$MONITORING_MODE)"
         | 
| 1263 | 
            +
            fi
         | 
| 1264 |  | 
| 1265 | 
            +
            # Step 11: Configure Trackio (automated) — skipped for local-only
         | 
| 1266 | 
            +
            if [ "$MONITORING_MODE" != "none" ]; then
         | 
| 1267 | 
            +
                print_step "Step 11: Configuring Trackio"
         | 
| 1268 | 
            +
                echo "================================="
         | 
| 1269 | 
            +
                cd ../trackio_tonic
         | 
| 1270 | 
            +
                print_info "Configuring Trackio ..."
         | 
| 1271 | 
            +
                print_info "Username will be auto-detected from token"
         | 
| 1272 | 
            +
                # Ensure environment variables are available for the script
         | 
| 1273 | 
            +
                export HF_TOKEN="$SPACE_DEPLOY_TOKEN"
         | 
| 1274 | 
            +
                export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN"
         | 
| 1275 | 
            +
                export HF_USERNAME="$HF_USERNAME"
         | 
| 1276 | 
            +
                python configure_trackio.py
         | 
| 1277 | 
            +
            else
         | 
| 1278 | 
            +
                print_info "Skipping Trackio configuration (monitoring_mode=$MONITORING_MODE)"
         | 
| 1279 | 
            +
            fi
         | 
| 1280 |  | 
| 1281 | 
             
            # Step 12: Training Configuration
         | 
| 1282 | 
             
            print_step "Step 12: Training Configuration"
         | 
|  | |
| 1329 | 
             
            # Ensure environment variables are available for training
         | 
| 1330 | 
             
            export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
         | 
| 1331 | 
             
            export HF_READ_TOKEN="$HF_READ_TOKEN"
         | 
| 1332 | 
            +
            export HF_TOKEN="$HF_WRITE_TOKEN"
         | 
| 1333 | 
            +
            export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
         | 
| 1334 | 
             
            export HF_USERNAME="$HF_USERNAME"
         | 
| 1335 | 
             
            export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
         | 
| 1336 | 
             
            export OUTPUT_DIR="$OUTPUT_DIR"
         | 
| 1337 | 
            +
            export MONITORING_MODE="$MONITORING_MODE"
         | 
| 1338 |  | 
| 1339 | 
             
            # Run the appropriate training script based on model type
         | 
| 1340 | 
             
            if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
         | 
|  | |
| 1408 | 
             
                    --trainer-type "$TRAINER_TYPE"
         | 
| 1409 | 
             
            fi
         | 
| 1410 |  | 
| 1411 | 
            +
            # Step 16.5: Switch Trackio Space to Read Token (Security) — only for trackio/both
         | 
| 1412 | 
            +
            if [ "$MONITORING_MODE" = "trackio" ] || [ "$MONITORING_MODE" = "both" ]; then
         | 
| 1413 | 
            +
                print_step "Step 16.5: Switching to Read Token for Security"
         | 
| 1414 | 
            +
                echo "===================================================="
         | 
| 1415 | 
            +
                print_info "Switching Trackio Space HF_TOKEN from write token to read token for security..."
         | 
| 1416 | 
            +
                print_info "This ensures the space can only read datasets, not write to repositories"
         | 
| 1417 | 
            +
                # Ensure environment variables are available for token switch
         | 
| 1418 | 
            +
                export HF_TOKEN="$HF_WRITE_TOKEN"  # Use write token to update space
         | 
| 1419 | 
            +
                export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
         | 
| 1420 | 
            +
                export HF_USERNAME="$HF_USERNAME"
         | 
| 1421 | 
            +
                # Switch HF_TOKEN in Trackio Space from write to read token
         | 
| 1422 | 
            +
                cd scripts/trackio_tonic
         | 
| 1423 | 
            +
                python switch_to_read_token.py "$HF_USERNAME/$TRACKIO_SPACE_NAME" "$HF_READ_TOKEN" "$HF_WRITE_TOKEN"
         | 
| 1424 | 
            +
                if [ $? -eq 0 ]; then
         | 
| 1425 | 
            +
                    print_status "✅ Successfully switched Trackio Space HF_TOKEN to read token"
         | 
| 1426 | 
            +
                    print_info "🔒 Space now uses read-only permissions for security"
         | 
| 1427 | 
            +
                else
         | 
| 1428 | 
            +
                    print_warning "⚠️ Failed to switch to read token, but continuing with pipeline"
         | 
| 1429 | 
            +
                    print_info "You can manually switch the token in your Space settings later"
         | 
| 1430 | 
            +
                fi
         | 
| 1431 | 
            +
                cd ../..
         | 
| 1432 | 
             
            else
         | 
| 1433 | 
            +
                print_info "Skipping token switch (monitoring_mode=$MONITORING_MODE)"
         | 
|  | |
| 1434 | 
             
            fi
         | 
| 1435 |  | 
|  | |
|  | |
| 1436 | 
             
            # Step 17: Deploy Demo Space
         | 
| 1437 | 
             
            print_step "Step 17: Deploying Demo Space"
         | 
| 1438 | 
             
            echo "=================================="
         | 
|  | |
| 1460 | 
             
                    --hf-username "$HF_USERNAME" \
         | 
| 1461 | 
             
                    --model-id "$DEMO_MODEL_ID" \
         | 
| 1462 | 
             
                    --subfolder "$DEMO_SUBFOLDER" \
         | 
| 1463 | 
            +
                    --space-name "${REPO_SHORT}-demo" \
         | 
| 1464 | 
            +
                    --config-file "$CONFIG_FILE"
         | 
| 1465 |  | 
| 1466 | 
             
                if [ $? -eq 0 ]; then
         | 
| 1467 | 
             
                    DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo"
         | 
    	
        requirements/requirements_core.txt
    CHANGED
    
    | @@ -22,4 +22,6 @@ pynvml>=12.0.0 | |
| 22 | 
             
            # GPT-OSS specific dependencies
         | 
| 23 | 
             
            # Note: GPT-OSS requires specific versions for optimal performance
         | 
| 24 | 
             
            # These are compatible with the tutorial requirements
         | 
| 25 | 
            -
            bitsandbytes>=0.41.0  # For 4-bit quantization
         | 
|  | |
|  | 
|  | |
| 22 | 
             
            # GPT-OSS specific dependencies
         | 
| 23 | 
             
            # Note: GPT-OSS requires specific versions for optimal performance
         | 
| 24 | 
             
            # These are compatible with the tutorial requirements
         | 
| 25 | 
            +
            bitsandbytes>=0.41.0  # For 4-bit quantization
         | 
| 26 | 
            +
            triton >= 3.4.0
         | 
| 27 | 
            +
            kernels
         | 
    	
        scripts/deploy_demo_space.py
    CHANGED
    
    | @@ -39,7 +39,7 @@ class DemoSpaceDeployer: | |
| 39 |  | 
| 40 | 
             
                def __init__(self, hf_token: str, hf_username: str, model_id: str, 
         | 
| 41 | 
             
                             subfolder: str = "int4", space_name: Optional[str] = None, 
         | 
| 42 | 
            -
                             demo_type: Optional[str] = None):
         | 
| 43 | 
             
                    self.hf_token = hf_token
         | 
| 44 | 
             
                    self.hf_username = hf_username
         | 
| 45 | 
             
                    # Allow passing just a repo name without username and auto-prefix
         | 
| @@ -48,6 +48,13 @@ class DemoSpaceDeployer: | |
| 48 | 
             
                    self.space_name = space_name or f"{self.model_id.split('/')[-1]}-demo"
         | 
| 49 | 
             
                    self.space_id = f"{hf_username}/{self.space_name}"
         | 
| 50 | 
             
                    self.space_url = f"https://huggingface.co/spaces/{self.space_id}"
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 51 |  | 
| 52 | 
             
                    # Determine demo type from model_id if not provided
         | 
| 53 | 
             
                    if demo_type is None:
         | 
| @@ -64,6 +71,45 @@ class DemoSpaceDeployer: | |
| 64 | 
             
                    else:
         | 
| 65 | 
             
                        self.api = None
         | 
| 66 | 
             
                        logger.warning("huggingface_hub not available, using CLI fallback")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 67 |  | 
| 68 | 
             
                def _detect_demo_type(self, model_id: str) -> str:
         | 
| 69 | 
             
                    """Detect the appropriate demo type based on model ID"""
         | 
| @@ -89,25 +135,34 @@ class DemoSpaceDeployer: | |
| 89 | 
             
                    if self.demo_type == "gpt":
         | 
| 90 | 
             
                        # For GPT-OSS models, we need more sophisticated environment setup
         | 
| 91 | 
             
                        model_name = self.model_id.split("/")[-1] if "/" in self.model_id else self.model_id
         | 
| 92 | 
            -
                        
         | 
| 93 | 
             
                        env_setup = f"""
         | 
| 94 | 
             
            # Environment variables for GPT-OSS model configuration
         | 
| 95 | 
             
            import os
         | 
| 96 | 
            -
            os.environ['HF_MODEL_ID'] =  | 
| 97 | 
            -
            os.environ['LORA_MODEL_ID'] =  | 
| 98 | 
             
            os.environ['BASE_MODEL_ID'] = 'openai/gpt-oss-20b'
         | 
| 99 | 
            -
            os.environ['MODEL_SUBFOLDER'] =  | 
| 100 | 
            -
            os.environ['MODEL_NAME'] =  | 
|  | |
|  | |
|  | |
|  | |
| 101 |  | 
| 102 | 
             
            """
         | 
| 103 | 
             
                    else:
         | 
| 104 | 
             
                        # For SmolLM models, use simpler setup
         | 
|  | |
| 105 | 
             
                        env_setup = f"""
         | 
| 106 | 
             
            # Environment variables for model configuration
         | 
| 107 | 
             
            import os
         | 
| 108 | 
            -
            os.environ['HF_MODEL_ID'] =  | 
| 109 | 
            -
            os.environ['MODEL_SUBFOLDER'] =  | 
| 110 | 
            -
            os.environ['MODEL_NAME'] =  | 
|  | |
|  | |
|  | |
|  | |
| 111 |  | 
| 112 | 
             
            """
         | 
| 113 | 
             
                    return env_setup
         | 
| @@ -162,6 +217,40 @@ os.environ['MODEL_NAME'] = '{self.model_id.split("/")[-1]}' | |
| 162 | 
             
                                description="Display name for the model"
         | 
| 163 | 
             
                            )
         | 
| 164 | 
             
                            logger.info(f"✅ Successfully set MODEL_NAME variable: {model_name}")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 165 |  | 
| 166 | 
             
                    except Exception as e:
         | 
| 167 | 
             
                        logger.error(f"❌ Failed to set model variables: {e}")
         | 
| @@ -314,28 +403,51 @@ os.environ['MODEL_NAME'] = '{self.model_id.split("/")[-1]}' | |
| 314 |  | 
| 315 | 
             
                            logger.info("✅ Updated app.py with model configuration")
         | 
| 316 |  | 
| 317 | 
            -
                        #  | 
| 318 | 
            -
                         | 
| 319 | 
            -
             | 
| 320 | 
            -
             | 
| 321 | 
            -
             | 
| 322 | 
            -
             | 
| 323 | 
            -
             | 
| 324 | 
            -
             | 
| 325 | 
            -
             | 
| 326 | 
            -
             | 
| 327 | 
            -
             | 
| 328 | 
            -
             | 
| 329 | 
            -
             | 
| 330 | 
            -
             | 
| 331 | 
            -
             | 
| 332 | 
            -
             | 
| 333 | 
            -
            ## Usage
         | 
| 334 | 
            -
            Simply start chatting with the model using the interface below!
         | 
| 335 |  | 
| 336 | 
            -
             | 
| 337 | 
            -
             | 
| 338 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 339 |  | 
| 340 | 
             
                        with open(Path(temp_dir) / "README.md", 'w', encoding='utf-8') as f:
         | 
| 341 | 
             
                            f.write(readme_content)
         | 
| @@ -465,6 +577,12 @@ Simply start chatting with the model using the interface below! | |
| 465 | 
             
                        logger.info(f"   LORA_MODEL_ID={self.model_id}")
         | 
| 466 | 
             
                        logger.info(f"   BASE_MODEL_ID=openai/gpt-oss-20b")
         | 
| 467 | 
             
                        logger.info(f"   MODEL_NAME={model_name}")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 468 |  | 
| 469 | 
             
                    logger.info(f"\n🔧 To set secrets in your Space:")
         | 
| 470 | 
             
                    logger.info(f"1. Go to your Space settings: {self.space_url}/settings")
         | 
| @@ -574,6 +692,7 @@ def main(): | |
| 574 | 
             
                parser.add_argument("--subfolder", default="int4", help="Model subfolder (default: int4)")
         | 
| 575 | 
             
                parser.add_argument("--space-name", help="Custom space name (optional)")
         | 
| 576 | 
             
                parser.add_argument("--demo-type", choices=["smol", "gpt"], help="Demo type: 'smol' for SmolLM, 'gpt' for GPT-OSS (auto-detected if not specified)")
         | 
|  | |
| 577 |  | 
| 578 | 
             
                args = parser.parse_args()
         | 
| 579 |  | 
| @@ -583,7 +702,8 @@ def main(): | |
| 583 | 
             
                    model_id=args.model_id,
         | 
| 584 | 
             
                    subfolder=args.subfolder,
         | 
| 585 | 
             
                    space_name=args.space_name,
         | 
| 586 | 
            -
                    demo_type=args.demo_type
         | 
|  | |
| 587 | 
             
                )
         | 
| 588 |  | 
| 589 | 
             
                success = deployer.deploy()
         | 
|  | |
| 39 |  | 
| 40 | 
             
                def __init__(self, hf_token: str, hf_username: str, model_id: str, 
         | 
| 41 | 
             
                             subfolder: str = "int4", space_name: Optional[str] = None, 
         | 
| 42 | 
            +
                             demo_type: Optional[str] = None, config_file: Optional[str] = None):
         | 
| 43 | 
             
                    self.hf_token = hf_token
         | 
| 44 | 
             
                    self.hf_username = hf_username
         | 
| 45 | 
             
                    # Allow passing just a repo name without username and auto-prefix
         | 
|  | |
| 48 | 
             
                    self.space_name = space_name or f"{self.model_id.split('/')[-1]}-demo"
         | 
| 49 | 
             
                    self.space_id = f"{hf_username}/{self.space_name}"
         | 
| 50 | 
             
                    self.space_url = f"https://huggingface.co/spaces/{self.space_id}"
         | 
| 51 | 
            +
                    self.config_file = config_file
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    # Config-derived context
         | 
| 54 | 
            +
                    self.system_message: Optional[str] = None
         | 
| 55 | 
            +
                    self.developer_message: Optional[str] = None
         | 
| 56 | 
            +
                    self.model_identity: Optional[str] = None
         | 
| 57 | 
            +
                    self.reasoning_effort: Optional[str] = None
         | 
| 58 |  | 
| 59 | 
             
                    # Determine demo type from model_id if not provided
         | 
| 60 | 
             
                    if demo_type is None:
         | 
|  | |
| 71 | 
             
                    else:
         | 
| 72 | 
             
                        self.api = None
         | 
| 73 | 
             
                        logger.warning("huggingface_hub not available, using CLI fallback")
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    # Load optional config-specified messages
         | 
| 76 | 
            +
                    try:
         | 
| 77 | 
            +
                        self._load_config_messages()
         | 
| 78 | 
            +
                    except Exception as e:
         | 
| 79 | 
            +
                        logger.warning(f"Could not load config messages: {e}")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                def _load_config_messages(self) -> None:
         | 
| 82 | 
            +
                    """Load system/developer/model_identity from a training config file if provided."""
         | 
| 83 | 
            +
                    if not self.config_file:
         | 
| 84 | 
            +
                        return
         | 
| 85 | 
            +
                    cfg_path = Path(self.config_file)
         | 
| 86 | 
            +
                    if not cfg_path.exists():
         | 
| 87 | 
            +
                        logger.warning(f"Config file not found: {cfg_path}")
         | 
| 88 | 
            +
                        return
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    # Ensure project root and config dir are importable for relative imports inside config
         | 
| 91 | 
            +
                    project_root = Path(__file__).parent.parent
         | 
| 92 | 
            +
                    if str(project_root) not in sys.path:
         | 
| 93 | 
            +
                        sys.path.insert(0, str(project_root))
         | 
| 94 | 
            +
                    cfg_dir = project_root / "config"
         | 
| 95 | 
            +
                    if str(cfg_dir) not in sys.path:
         | 
| 96 | 
            +
                        sys.path.insert(0, str(cfg_dir))
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    import importlib.util
         | 
| 99 | 
            +
                    spec = importlib.util.spec_from_file_location("config_module", str(cfg_path))
         | 
| 100 | 
            +
                    if not spec or not spec.loader:
         | 
| 101 | 
            +
                        return
         | 
| 102 | 
            +
                    module = importlib.util.module_from_spec(spec)
         | 
| 103 | 
            +
                    spec.loader.exec_module(module)  # type: ignore
         | 
| 104 | 
            +
                    cfg = getattr(module, "config", None)
         | 
| 105 | 
            +
                    if cfg is None:
         | 
| 106 | 
            +
                        return
         | 
| 107 | 
            +
                    self.system_message = getattr(cfg, "system_message", None)
         | 
| 108 | 
            +
                    self.developer_message = getattr(cfg, "developer_message", None)
         | 
| 109 | 
            +
                    chat_kwargs = getattr(cfg, "chat_template_kwargs", None)
         | 
| 110 | 
            +
                    if isinstance(chat_kwargs, dict):
         | 
| 111 | 
            +
                        self.model_identity = chat_kwargs.get("model_identity")
         | 
| 112 | 
            +
                        self.reasoning_effort = chat_kwargs.get("reasoning_effort")
         | 
| 113 |  | 
| 114 | 
             
                def _detect_demo_type(self, model_id: str) -> str:
         | 
| 115 | 
             
                    """Detect the appropriate demo type based on model ID"""
         | 
|  | |
| 135 | 
             
                    if self.demo_type == "gpt":
         | 
| 136 | 
             
                        # For GPT-OSS models, we need more sophisticated environment setup
         | 
| 137 | 
             
                        model_name = self.model_id.split("/")[-1] if "/" in self.model_id else self.model_id
         | 
| 138 | 
            +
                        import json as _json
         | 
| 139 | 
             
                        env_setup = f"""
         | 
| 140 | 
             
            # Environment variables for GPT-OSS model configuration
         | 
| 141 | 
             
            import os
         | 
| 142 | 
            +
            os.environ['HF_MODEL_ID'] = {_json.dumps(self.model_id)}
         | 
| 143 | 
            +
            os.environ['LORA_MODEL_ID'] = {_json.dumps(self.model_id)}
         | 
| 144 | 
             
            os.environ['BASE_MODEL_ID'] = 'openai/gpt-oss-20b'
         | 
| 145 | 
            +
            os.environ['MODEL_SUBFOLDER'] = {_json.dumps(self.subfolder if self.subfolder else "")}
         | 
| 146 | 
            +
            os.environ['MODEL_NAME'] = {_json.dumps(model_name)}
         | 
| 147 | 
            +
            os.environ['MODEL_IDENTITY'] = {_json.dumps(self.model_identity or "")}
         | 
| 148 | 
            +
            os.environ['SYSTEM_MESSAGE'] = {_json.dumps(self.system_message or (self.model_identity or ""))}
         | 
| 149 | 
            +
            os.environ['DEVELOPER_MESSAGE'] = {_json.dumps(self.developer_message or "")}
         | 
| 150 | 
            +
            os.environ['REASONING_EFFORT'] = {_json.dumps((self.reasoning_effort or "medium"))}
         | 
| 151 |  | 
| 152 | 
             
            """
         | 
| 153 | 
             
                    else:
         | 
| 154 | 
             
                        # For SmolLM models, use simpler setup
         | 
| 155 | 
            +
                        import json as _json
         | 
| 156 | 
             
                        env_setup = f"""
         | 
| 157 | 
             
            # Environment variables for model configuration
         | 
| 158 | 
             
            import os
         | 
| 159 | 
            +
            os.environ['HF_MODEL_ID'] = {_json.dumps(self.model_id)}
         | 
| 160 | 
            +
            os.environ['MODEL_SUBFOLDER'] = {_json.dumps(self.subfolder if self.subfolder else "")}
         | 
| 161 | 
            +
            os.environ['MODEL_NAME'] = {_json.dumps(self.model_id.split("/")[-1])}
         | 
| 162 | 
            +
            os.environ['MODEL_IDENTITY'] = {_json.dumps(self.model_identity or "")}
         | 
| 163 | 
            +
            os.environ['SYSTEM_MESSAGE'] = {_json.dumps(self.system_message or (self.model_identity or ""))}
         | 
| 164 | 
            +
            os.environ['DEVELOPER_MESSAGE'] = {_json.dumps(self.developer_message or "")}
         | 
| 165 | 
            +
            os.environ['REASONING_EFFORT'] = {_json.dumps((self.reasoning_effort or "medium"))}
         | 
| 166 |  | 
| 167 | 
             
            """
         | 
| 168 | 
             
                    return env_setup
         | 
|  | |
| 217 | 
             
                                description="Display name for the model"
         | 
| 218 | 
             
                            )
         | 
| 219 | 
             
                            logger.info(f"✅ Successfully set MODEL_NAME variable: {model_name}")
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                        # Optional context variables
         | 
| 222 | 
            +
                        if self.model_identity:
         | 
| 223 | 
            +
                            self.api.add_space_variable(
         | 
| 224 | 
            +
                                repo_id=self.space_id,
         | 
| 225 | 
            +
                                key="MODEL_IDENTITY",
         | 
| 226 | 
            +
                                value=self.model_identity,
         | 
| 227 | 
            +
                                description="Default model identity/system persona"
         | 
| 228 | 
            +
                            )
         | 
| 229 | 
            +
                            logger.info("✅ Set MODEL_IDENTITY variable")
         | 
| 230 | 
            +
                        if self.system_message or self.model_identity:
         | 
| 231 | 
            +
                            self.api.add_space_variable(
         | 
| 232 | 
            +
                                repo_id=self.space_id,
         | 
| 233 | 
            +
                                key="SYSTEM_MESSAGE",
         | 
| 234 | 
            +
                                value=self.system_message or self.model_identity or "",
         | 
| 235 | 
            +
                                description="Default system message"
         | 
| 236 | 
            +
                            )
         | 
| 237 | 
            +
                            logger.info("✅ Set SYSTEM_MESSAGE variable")
         | 
| 238 | 
            +
                        if self.developer_message:
         | 
| 239 | 
            +
                            self.api.add_space_variable(
         | 
| 240 | 
            +
                                repo_id=self.space_id,
         | 
| 241 | 
            +
                                key="DEVELOPER_MESSAGE",
         | 
| 242 | 
            +
                                value=self.developer_message,
         | 
| 243 | 
            +
                                description="Default developer message"
         | 
| 244 | 
            +
                            )
         | 
| 245 | 
            +
                            logger.info("✅ Set DEVELOPER_MESSAGE variable")
         | 
| 246 | 
            +
                        if self.reasoning_effort:
         | 
| 247 | 
            +
                            self.api.add_space_variable(
         | 
| 248 | 
            +
                                repo_id=self.space_id,
         | 
| 249 | 
            +
                                key="REASONING_EFFORT",
         | 
| 250 | 
            +
                                value=self.reasoning_effort,
         | 
| 251 | 
            +
                                description="Default reasoning effort (low|medium|high)"
         | 
| 252 | 
            +
                            )
         | 
| 253 | 
            +
                            logger.info("✅ Set REASONING_EFFORT variable")
         | 
| 254 |  | 
| 255 | 
             
                    except Exception as e:
         | 
| 256 | 
             
                        logger.error(f"❌ Failed to set model variables: {e}")
         | 
|  | |
| 403 |  | 
| 404 | 
             
                            logger.info("✅ Updated app.py with model configuration")
         | 
| 405 |  | 
| 406 | 
            +
                        # YAML front matter required by Hugging Face Spaces
         | 
| 407 | 
            +
                        yaml_front_matter = (
         | 
| 408 | 
            +
                            f"---\n"
         | 
| 409 | 
            +
                            f"title: {'GPT-OSS Demo' if self.demo_type == 'gpt' else 'SmolLM3 Demo'}\n"
         | 
| 410 | 
            +
                            f"emoji: {'🌟' if self.demo_type == 'gpt' else '💃🏻'}\n"
         | 
| 411 | 
            +
                            f"colorFrom: {'blue' if self.demo_type == 'gpt' else 'green'}\n"
         | 
| 412 | 
            +
                            f"colorTo: {'pink' if self.demo_type == 'gpt' else 'purple'}\n"
         | 
| 413 | 
            +
                            f"sdk: gradio\n"
         | 
| 414 | 
            +
                            f"sdk_version: 5.40.0\n"
         | 
| 415 | 
            +
                            f"app_file: app.py\n"
         | 
| 416 | 
            +
                            f"pinned: false\n"
         | 
| 417 | 
            +
                            f"short_description: Interactive demo for {self.model_id}\n"
         | 
| 418 | 
            +
                            + ("license: mit\n" if self.demo_type != 'gpt' else "") +
         | 
| 419 | 
            +
                            f"---\n\n"
         | 
| 420 | 
            +
                        )
         | 
|  | |
|  | |
|  | |
| 421 |  | 
| 422 | 
            +
                        # Create README.md for the space (include configuration details)
         | 
| 423 | 
            +
                        readme_content = (
         | 
| 424 | 
            +
                            yaml_front_matter
         | 
| 425 | 
            +
                            + f"# Demo: {self.model_id}\n\n"
         | 
| 426 | 
            +
                            + f"This is an interactive demo for the fine-tuned model {self.model_id}.\n\n"
         | 
| 427 | 
            +
                            + "## Features\n"
         | 
| 428 | 
            +
                              "- Interactive chat interface\n"
         | 
| 429 | 
            +
                              "- Customizable system & developer prompts\n"
         | 
| 430 | 
            +
                              "- Advanced generation parameters\n"
         | 
| 431 | 
            +
                              "- Thinking mode support\n\n"
         | 
| 432 | 
            +
                            + "## Model Information\n"
         | 
| 433 | 
            +
                              f"- **Model ID**: {self.model_id}\n"
         | 
| 434 | 
            +
                              f"- **Subfolder**: {self.subfolder if self.subfolder and self.subfolder.strip() else 'main'}\n"
         | 
| 435 | 
            +
                              f"- **Deployed by**: {self.hf_username}\n"
         | 
| 436 | 
            +
                              + ("- **Base Model**: openai/gpt-oss-20b\n" if self.demo_type == 'gpt' else "")
         | 
| 437 | 
            +
                              + "\n"
         | 
| 438 | 
            +
                            + "## Configuration\n"
         | 
| 439 | 
            +
                              "- **Model Identity**:\n\n"
         | 
| 440 | 
            +
                              f"```\n{self.model_identity or 'Not set'}\n```\n\n"
         | 
| 441 | 
            +
                              "- **System Message** (default):\n\n"
         | 
| 442 | 
            +
                              f"```\n{(self.system_message or self.model_identity) or 'Not set'}\n```\n\n"
         | 
| 443 | 
            +
                              "- **Developer Message** (default):\n\n"
         | 
| 444 | 
            +
                              f"```\n{self.developer_message or 'Not set'}\n```\n\n"
         | 
| 445 | 
            +
                              "These defaults come from the selected training configuration and can be adjusted in the UI when you run the demo.\n\n"
         | 
| 446 | 
            +
                            + "## Usage\n"
         | 
| 447 | 
            +
                              "Simply start chatting with the model using the interface below!\n\n"
         | 
| 448 | 
            +
                            + "---\n"
         | 
| 449 | 
            +
                              "*This demo was automatically deployed by the SmolFactory Fine-tuning Pipeline*\n"
         | 
| 450 | 
            +
                        )
         | 
| 451 |  | 
| 452 | 
             
                        with open(Path(temp_dir) / "README.md", 'w', encoding='utf-8') as f:
         | 
| 453 | 
             
                            f.write(readme_content)
         | 
|  | |
| 577 | 
             
                        logger.info(f"   LORA_MODEL_ID={self.model_id}")
         | 
| 578 | 
             
                        logger.info(f"   BASE_MODEL_ID=openai/gpt-oss-20b")
         | 
| 579 | 
             
                        logger.info(f"   MODEL_NAME={model_name}")
         | 
| 580 | 
            +
                    if self.model_identity:
         | 
| 581 | 
            +
                        logger.info(f"   MODEL_IDENTITY={self.model_identity}")
         | 
| 582 | 
            +
                    if self.system_message:
         | 
| 583 | 
            +
                        logger.info(f"   SYSTEM_MESSAGE={self.system_message}")
         | 
| 584 | 
            +
                    if self.developer_message:
         | 
| 585 | 
            +
                        logger.info(f"   DEVELOPER_MESSAGE={self.developer_message}")
         | 
| 586 |  | 
| 587 | 
             
                    logger.info(f"\n🔧 To set secrets in your Space:")
         | 
| 588 | 
             
                    logger.info(f"1. Go to your Space settings: {self.space_url}/settings")
         | 
|  | |
| 692 | 
             
                parser.add_argument("--subfolder", default="int4", help="Model subfolder (default: int4)")
         | 
| 693 | 
             
                parser.add_argument("--space-name", help="Custom space name (optional)")
         | 
| 694 | 
             
                parser.add_argument("--demo-type", choices=["smol", "gpt"], help="Demo type: 'smol' for SmolLM, 'gpt' for GPT-OSS (auto-detected if not specified)")
         | 
| 695 | 
            +
                parser.add_argument("--config-file", help="Path to the training config file to import context (system/developer/model_identity)")
         | 
| 696 |  | 
| 697 | 
             
                args = parser.parse_args()
         | 
| 698 |  | 
|  | |
| 702 | 
             
                    model_id=args.model_id,
         | 
| 703 | 
             
                    subfolder=args.subfolder,
         | 
| 704 | 
             
                    space_name=args.space_name,
         | 
| 705 | 
            +
                    demo_type=args.demo_type,
         | 
| 706 | 
            +
                    config_file=args.config_file,
         | 
| 707 | 
             
                )
         | 
| 708 |  | 
| 709 | 
             
                success = deployer.deploy()
         | 
    	
        scripts/training/train_gpt_oss.py
    CHANGED
    
    | @@ -980,7 +980,8 @@ def train_gpt_oss(config_path, experiment_name, output_dir, trackio_url, trainer | |
| 980 | 
             
                        log_metrics=True,
         | 
| 981 | 
             
                        log_config=True,
         | 
| 982 | 
             
                        hf_token=os.environ.get('HF_TOKEN'),
         | 
| 983 | 
            -
                        dataset_repo=os.environ.get('TRACKIO_DATASET_REPO')
         | 
|  | |
| 984 | 
             
                    )
         | 
| 985 | 
             
                    # Log configuration once
         | 
| 986 | 
             
                    try:
         | 
|  | |
| 980 | 
             
                        log_metrics=True,
         | 
| 981 | 
             
                        log_config=True,
         | 
| 982 | 
             
                        hf_token=os.environ.get('HF_TOKEN'),
         | 
| 983 | 
            +
                        dataset_repo=os.environ.get('TRACKIO_DATASET_REPO'),
         | 
| 984 | 
            +
                        monitoring_mode=os.environ.get('MONITORING_MODE', 'both'),
         | 
| 985 | 
             
                    )
         | 
| 986 | 
             
                    # Log configuration once
         | 
| 987 | 
             
                    try:
         | 
    	
        src/monitoring.py
    CHANGED
    
    | @@ -31,7 +31,14 @@ except ImportError: | |
| 31 | 
             
            logger = logging.getLogger(__name__)
         | 
| 32 |  | 
| 33 | 
             
            class SmolLM3Monitor:
         | 
| 34 | 
            -
                """Monitoring and tracking for SmolLM3 fine-tuning experiments with HF Datasets support | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 35 |  | 
| 36 | 
             
                def __init__(
         | 
| 37 | 
             
                    self,
         | 
| @@ -43,10 +50,25 @@ class SmolLM3Monitor: | |
| 43 | 
             
                    log_metrics: bool = True,
         | 
| 44 | 
             
                    log_config: bool = True,
         | 
| 45 | 
             
                    hf_token: Optional[str] = None,
         | 
| 46 | 
            -
             | 
|  | |
| 47 | 
             
                ):
         | 
| 48 | 
             
                    self.experiment_name = experiment_name
         | 
| 49 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 50 | 
             
                    self.log_artifacts = log_artifacts
         | 
| 51 | 
             
                    self.log_metrics_enabled = log_metrics  # Rename to avoid conflict
         | 
| 52 | 
             
                    self.log_config_enabled = log_config  # Rename to avoid conflict
         | 
| @@ -57,7 +79,6 @@ class SmolLM3Monitor: | |
| 57 | 
             
                        self.flush_interval = 10
         | 
| 58 |  | 
| 59 | 
             
                    # HF Datasets configuration
         | 
| 60 | 
            -
                    self.hf_token = hf_token or os.environ.get('HF_TOKEN')
         | 
| 61 | 
             
                    self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
         | 
| 62 |  | 
| 63 | 
             
                    # Ensure dataset repository is properly set
         | 
| @@ -73,19 +94,20 @@ class SmolLM3Monitor: | |
| 73 |  | 
| 74 | 
             
                    # Initialize Trackio API client
         | 
| 75 | 
             
                    self.trackio_client = None
         | 
| 76 | 
            -
                    if self. | 
| 77 | 
             
                        self._setup_trackio(trackio_url, trackio_token)
         | 
| 78 |  | 
| 79 | 
             
                    # Initialize HF Datasets client
         | 
| 80 | 
             
                    self.hf_dataset_client = None
         | 
| 81 | 
            -
                     | 
|  | |
| 82 | 
             
                        self._setup_hf_datasets()
         | 
| 83 |  | 
| 84 | 
             
                    logger.info("Initialized monitoring for experiment: %s", experiment_name)
         | 
| 85 | 
             
                    logger.info("Dataset repository: %s", self.dataset_repo)
         | 
| 86 |  | 
| 87 | 
             
                    # Create experiment in Trackio if tracking is enabled
         | 
| 88 | 
            -
                    if self. | 
| 89 | 
             
                        self._create_experiment()
         | 
| 90 |  | 
| 91 | 
             
                def _setup_hf_datasets(self):
         | 
| @@ -136,6 +158,7 @@ class SmolLM3Monitor: | |
| 136 | 
             
                        if not space_id:
         | 
| 137 | 
             
                            logger.warning("No Trackio Space configured via param or env (TRACKIO_URL/TRACKIO_SPACE_ID). Disabling Trackio tracking.")
         | 
| 138 | 
             
                            self.enable_tracking = False
         | 
|  | |
| 139 | 
             
                            return
         | 
| 140 |  | 
| 141 | 
             
                        # Get HF token for Space resolution
         | 
| @@ -151,6 +174,7 @@ class SmolLM3Monitor: | |
| 151 | 
             
                                logger.warning(f"Trackio Space not accessible: {connection_test['error']}")
         | 
| 152 | 
             
                                logger.info("Continuing with HF Datasets only")
         | 
| 153 | 
             
                                self.enable_tracking = False
         | 
|  | |
| 154 | 
             
                                return
         | 
| 155 | 
             
                            logger.info("✅ Trackio Space connection successful")
         | 
| 156 |  | 
| @@ -158,11 +182,13 @@ class SmolLM3Monitor: | |
| 158 | 
             
                            logger.warning(f"Trackio Space not accessible: {e}")
         | 
| 159 | 
             
                            logger.info("Continuing with HF Datasets only")
         | 
| 160 | 
             
                            self.enable_tracking = False
         | 
|  | |
| 161 | 
             
                            return
         | 
| 162 |  | 
| 163 | 
             
                    except Exception as e:
         | 
| 164 | 
             
                        logger.error(f"Failed to setup Trackio: {e}")
         | 
| 165 | 
             
                        self.enable_tracking = False
         | 
|  | |
| 166 |  | 
| 167 | 
             
                def _create_experiment(self):
         | 
| 168 | 
             
                    """Create experiment in Trackio and set experiment_id"""
         | 
| @@ -218,6 +244,11 @@ class SmolLM3Monitor: | |
| 218 | 
             
                    - Artifacts/logs: union with de-dup, preserve order
         | 
| 219 | 
             
                    - Top-level scalar fields (e.g., status, name, description, created_at) update only when provided
         | 
| 220 | 
             
                    """
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 221 | 
             
                    if not self.dataset_manager:
         | 
| 222 | 
             
                        logger.warning("⚠️ Dataset manager not available")
         | 
| 223 | 
             
                        return False
         | 
| @@ -401,7 +432,7 @@ class SmolLM3Monitor: | |
| 401 |  | 
| 402 | 
             
                    try:
         | 
| 403 | 
             
                        # Log configuration as parameters
         | 
| 404 | 
            -
                        if self. | 
| 405 | 
             
                            try:
         | 
| 406 | 
             
                                result = self.trackio_client.log_parameters(
         | 
| 407 | 
             
                                    experiment_id=self.experiment_id,
         | 
| @@ -416,7 +447,8 @@ class SmolLM3Monitor: | |
| 416 | 
             
                                logger.warning("Trackio configuration logging failed: %s", e)
         | 
| 417 |  | 
| 418 | 
             
                        # Save to HF Dataset
         | 
| 419 | 
            -
                        self. | 
|  | |
| 420 |  | 
| 421 | 
             
                        # Also save config locally
         | 
| 422 | 
             
                        config_path = "config_{}_{}.json".format(
         | 
| @@ -467,7 +499,7 @@ class SmolLM3Monitor: | |
| 467 | 
             
                            metrics['step'] = step
         | 
| 468 |  | 
| 469 | 
             
                        # Log to Trackio (if available)
         | 
| 470 | 
            -
                        if self. | 
| 471 | 
             
                            try:
         | 
| 472 | 
             
                                result = self.trackio_client.log_metrics(
         | 
| 473 | 
             
                                    experiment_id=self.experiment_id,
         | 
| @@ -486,18 +518,19 @@ class SmolLM3Monitor: | |
| 486 | 
             
                        self.metrics_history.append(metrics)
         | 
| 487 |  | 
| 488 | 
             
                        # Save to HF Dataset periodically (configurable)
         | 
| 489 | 
            -
                         | 
| 490 | 
            -
             | 
| 491 | 
            -
             | 
| 492 | 
            -
                             | 
| 493 | 
            -
                                self | 
| 494 | 
            -
             | 
| 495 | 
            -
                                 | 
| 496 | 
            -
             | 
| 497 | 
            -
             | 
| 498 | 
            -
             | 
| 499 | 
            -
             | 
| 500 | 
            -
                             | 
|  | |
| 501 |  | 
| 502 | 
             
                        logger.debug("Metrics logged: %s", metrics)
         | 
| 503 |  | 
| @@ -518,7 +551,7 @@ class SmolLM3Monitor: | |
| 518 | 
             
                            "checkpoint_size": os.path.getsize(checkpoint_path) if os.path.exists(checkpoint_path) else 0
         | 
| 519 | 
             
                        }
         | 
| 520 |  | 
| 521 | 
            -
                        if self. | 
| 522 | 
             
                            result = self.trackio_client.log_parameters(
         | 
| 523 | 
             
                                experiment_id=self.experiment_id,
         | 
| 524 | 
             
                                parameters=checkpoint_info
         | 
| @@ -531,10 +564,11 @@ class SmolLM3Monitor: | |
| 531 |  | 
| 532 | 
             
                        self.artifacts.append(checkpoint_path)
         | 
| 533 | 
             
                        # Also preserve checkpoint info in HF dataset
         | 
| 534 | 
            -
                         | 
| 535 | 
            -
                             | 
| 536 | 
            -
             | 
| 537 | 
            -
                             | 
|  | |
| 538 | 
             
                        logger.info("Checkpoint logged: %s", checkpoint_path)
         | 
| 539 |  | 
| 540 | 
             
                    except Exception as e:
         | 
| @@ -597,7 +631,7 @@ class SmolLM3Monitor: | |
| 597 | 
             
                        summary['experiment_duration_hours'] = duration / 3600
         | 
| 598 |  | 
| 599 | 
             
                        # Log final summary to Trackio
         | 
| 600 | 
            -
                        if self. | 
| 601 | 
             
                            result = self.trackio_client.log_parameters(
         | 
| 602 | 
             
                                experiment_id=self.experiment_id,
         | 
| 603 | 
             
                                parameters=summary
         | 
| @@ -609,7 +643,8 @@ class SmolLM3Monitor: | |
| 609 | 
             
                                logger.error("Failed to log training summary to Trackio: %s", result)
         | 
| 610 |  | 
| 611 | 
             
                        # Save to HF Dataset
         | 
| 612 | 
            -
                        self. | 
|  | |
| 613 |  | 
| 614 | 
             
                        # Save summary locally
         | 
| 615 | 
             
                        summary_path = "training_summary_{}_{}.json".format(
         | 
| @@ -731,7 +766,7 @@ class SmolLM3Monitor: | |
| 731 |  | 
| 732 | 
             
                def get_experiment_url(self) -> Optional[str]:
         | 
| 733 | 
             
                    """Get the URL to view the experiment in Trackio"""
         | 
| 734 | 
            -
                    if self.trackio_client and self.experiment_id:
         | 
| 735 | 
             
                        return "{}?tab=view_experiments".format(self.trackio_client.space_url)
         | 
| 736 | 
             
                    return None
         | 
| 737 |  | 
| @@ -744,7 +779,7 @@ class SmolLM3Monitor: | |
| 744 | 
             
                    """
         | 
| 745 | 
             
                    logger.info(f"🔚 Closing monitoring session with status: {final_status}")
         | 
| 746 |  | 
| 747 | 
            -
                    if self. | 
| 748 | 
             
                        try:
         | 
| 749 | 
             
                            # Mark experiment as completed in Trackio
         | 
| 750 | 
             
                            result = self.trackio_client.update_experiment_status(
         | 
| @@ -759,7 +794,7 @@ class SmolLM3Monitor: | |
| 759 | 
             
                            logger.error("❌ Failed to close Trackio monitoring session: %s", e)
         | 
| 760 |  | 
| 761 | 
             
                    # Final save to HF Dataset with proper status update
         | 
| 762 | 
            -
                    if self.dataset_manager:
         | 
| 763 | 
             
                        try:
         | 
| 764 | 
             
                            # Update experiment with final status without clobbering metrics
         | 
| 765 | 
             
                            final_experiment_data = {
         | 
| @@ -798,5 +833,6 @@ def create_monitor_from_config(config, experiment_name: Optional[str] = None) -> | |
| 798 | 
             
                    log_metrics=getattr(config, 'log_metrics', True),
         | 
| 799 | 
             
                    log_config=getattr(config, 'log_config', True),
         | 
| 800 | 
             
                    hf_token=getattr(config, 'hf_token', None),
         | 
| 801 | 
            -
                    dataset_repo=getattr(config, 'dataset_repo', None)
         | 
|  | |
| 802 | 
             
                ) 
         | 
|  | |
| 31 | 
             
            logger = logging.getLogger(__name__)
         | 
| 32 |  | 
| 33 | 
             
            class SmolLM3Monitor:
         | 
| 34 | 
            +
                """Monitoring and tracking for SmolLM3 fine-tuning experiments with HF Datasets support
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                Monitoring modes:
         | 
| 37 | 
            +
                - "both": Log to Trackio Space and HF Datasets (plus local JSON files)
         | 
| 38 | 
            +
                - "dataset": Log only to HF Datasets (plus local JSON files). Trackio Space is not written to
         | 
| 39 | 
            +
                - "trackio": Log only to Trackio Space (plus local JSON files). HF Datasets writes are disabled
         | 
| 40 | 
            +
                - "none": Local-only logging; no remote writes
         | 
| 41 | 
            +
                """
         | 
| 42 |  | 
| 43 | 
             
                def __init__(
         | 
| 44 | 
             
                    self,
         | 
|  | |
| 50 | 
             
                    log_metrics: bool = True,
         | 
| 51 | 
             
                    log_config: bool = True,
         | 
| 52 | 
             
                    hf_token: Optional[str] = None,
         | 
| 53 | 
            +
                        dataset_repo: Optional[str] = None,
         | 
| 54 | 
            +
                        monitoring_mode: Optional[str] = None,
         | 
| 55 | 
             
                ):
         | 
| 56 | 
             
                    self.experiment_name = experiment_name
         | 
| 57 | 
            +
                    # Determine monitoring mode (env override supported)
         | 
| 58 | 
            +
                    mode_env = os.environ.get('MONITORING_MODE')
         | 
| 59 | 
            +
                    selected_mode = (monitoring_mode or mode_env or 'both').strip().lower()
         | 
| 60 | 
            +
                    if selected_mode not in ('both', 'dataset', 'trackio', 'none'):
         | 
| 61 | 
            +
                        selected_mode = 'both'
         | 
| 62 | 
            +
                    self.monitoring_mode = selected_mode
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    # Track which backends are active
         | 
| 65 | 
            +
                    self.use_trackio = (selected_mode in ('both', 'trackio')) and enable_tracking and TRACKIO_AVAILABLE
         | 
| 66 | 
            +
                    # HF dataset only if mode requires it and token is available (repo validated later)
         | 
| 67 | 
            +
                    self.hf_token = hf_token or os.environ.get('HF_TOKEN')
         | 
| 68 | 
            +
                    self.use_dataset = (selected_mode in ('both', 'dataset')) and bool(self.hf_token)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                    # For TRL compatibility, "enable_tracking" reflects Trackio availability
         | 
| 71 | 
            +
                    self.enable_tracking = self.use_trackio
         | 
| 72 | 
             
                    self.log_artifacts = log_artifacts
         | 
| 73 | 
             
                    self.log_metrics_enabled = log_metrics  # Rename to avoid conflict
         | 
| 74 | 
             
                    self.log_config_enabled = log_config  # Rename to avoid conflict
         | 
|  | |
| 79 | 
             
                        self.flush_interval = 10
         | 
| 80 |  | 
| 81 | 
             
                    # HF Datasets configuration
         | 
|  | |
| 82 | 
             
                    self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
         | 
| 83 |  | 
| 84 | 
             
                    # Ensure dataset repository is properly set
         | 
|  | |
| 94 |  | 
| 95 | 
             
                    # Initialize Trackio API client
         | 
| 96 | 
             
                    self.trackio_client = None
         | 
| 97 | 
            +
                    if self.use_trackio:
         | 
| 98 | 
             
                        self._setup_trackio(trackio_url, trackio_token)
         | 
| 99 |  | 
| 100 | 
             
                    # Initialize HF Datasets client
         | 
| 101 | 
             
                    self.hf_dataset_client = None
         | 
| 102 | 
            +
                    self.dataset_manager = None
         | 
| 103 | 
            +
                    if self.use_dataset:
         | 
| 104 | 
             
                        self._setup_hf_datasets()
         | 
| 105 |  | 
| 106 | 
             
                    logger.info("Initialized monitoring for experiment: %s", experiment_name)
         | 
| 107 | 
             
                    logger.info("Dataset repository: %s", self.dataset_repo)
         | 
| 108 |  | 
| 109 | 
             
                    # Create experiment in Trackio if tracking is enabled
         | 
| 110 | 
            +
                    if self.use_trackio and self.trackio_client:
         | 
| 111 | 
             
                        self._create_experiment()
         | 
| 112 |  | 
| 113 | 
             
                def _setup_hf_datasets(self):
         | 
|  | |
| 158 | 
             
                        if not space_id:
         | 
| 159 | 
             
                            logger.warning("No Trackio Space configured via param or env (TRACKIO_URL/TRACKIO_SPACE_ID). Disabling Trackio tracking.")
         | 
| 160 | 
             
                            self.enable_tracking = False
         | 
| 161 | 
            +
                            self.use_trackio = False
         | 
| 162 | 
             
                            return
         | 
| 163 |  | 
| 164 | 
             
                        # Get HF token for Space resolution
         | 
|  | |
| 174 | 
             
                                logger.warning(f"Trackio Space not accessible: {connection_test['error']}")
         | 
| 175 | 
             
                                logger.info("Continuing with HF Datasets only")
         | 
| 176 | 
             
                                self.enable_tracking = False
         | 
| 177 | 
            +
                                self.use_trackio = False
         | 
| 178 | 
             
                                return
         | 
| 179 | 
             
                            logger.info("✅ Trackio Space connection successful")
         | 
| 180 |  | 
|  | |
| 182 | 
             
                            logger.warning(f"Trackio Space not accessible: {e}")
         | 
| 183 | 
             
                            logger.info("Continuing with HF Datasets only")
         | 
| 184 | 
             
                            self.enable_tracking = False
         | 
| 185 | 
            +
                            self.use_trackio = False
         | 
| 186 | 
             
                            return
         | 
| 187 |  | 
| 188 | 
             
                    except Exception as e:
         | 
| 189 | 
             
                        logger.error(f"Failed to setup Trackio: {e}")
         | 
| 190 | 
             
                        self.enable_tracking = False
         | 
| 191 | 
            +
                        self.use_trackio = False
         | 
| 192 |  | 
| 193 | 
             
                def _create_experiment(self):
         | 
| 194 | 
             
                    """Create experiment in Trackio and set experiment_id"""
         | 
|  | |
| 244 | 
             
                    - Artifacts/logs: union with de-dup, preserve order
         | 
| 245 | 
             
                    - Top-level scalar fields (e.g., status, name, description, created_at) update only when provided
         | 
| 246 | 
             
                    """
         | 
| 247 | 
            +
                    # Respect monitoring mode
         | 
| 248 | 
            +
                    if not self.use_dataset:
         | 
| 249 | 
            +
                        logger.debug("Dataset persistence disabled by monitoring_mode=%s", self.monitoring_mode)
         | 
| 250 | 
            +
                        return False
         | 
| 251 | 
            +
             | 
| 252 | 
             
                    if not self.dataset_manager:
         | 
| 253 | 
             
                        logger.warning("⚠️ Dataset manager not available")
         | 
| 254 | 
             
                        return False
         | 
|  | |
| 432 |  | 
| 433 | 
             
                    try:
         | 
| 434 | 
             
                        # Log configuration as parameters
         | 
| 435 | 
            +
                        if self.use_trackio and self.trackio_client:
         | 
| 436 | 
             
                            try:
         | 
| 437 | 
             
                                result = self.trackio_client.log_parameters(
         | 
| 438 | 
             
                                    experiment_id=self.experiment_id,
         | 
|  | |
| 447 | 
             
                                logger.warning("Trackio configuration logging failed: %s", e)
         | 
| 448 |  | 
| 449 | 
             
                        # Save to HF Dataset
         | 
| 450 | 
            +
                        if self.use_dataset:
         | 
| 451 | 
            +
                            self._save_to_hf_dataset(config)
         | 
| 452 |  | 
| 453 | 
             
                        # Also save config locally
         | 
| 454 | 
             
                        config_path = "config_{}_{}.json".format(
         | 
|  | |
| 499 | 
             
                            metrics['step'] = step
         | 
| 500 |  | 
| 501 | 
             
                        # Log to Trackio (if available)
         | 
| 502 | 
            +
                        if self.use_trackio and self.trackio_client:
         | 
| 503 | 
             
                            try:
         | 
| 504 | 
             
                                result = self.trackio_client.log_metrics(
         | 
| 505 | 
             
                                    experiment_id=self.experiment_id,
         | 
|  | |
| 518 | 
             
                        self.metrics_history.append(metrics)
         | 
| 519 |  | 
| 520 | 
             
                        # Save to HF Dataset periodically (configurable)
         | 
| 521 | 
            +
                        if self.use_dataset:
         | 
| 522 | 
            +
                            flush_every = max(1, int(getattr(self, 'flush_interval', 10)))
         | 
| 523 | 
            +
                            # Only append the delta since last flush to minimize risk
         | 
| 524 | 
            +
                            try:
         | 
| 525 | 
            +
                                if not hasattr(self, '_last_flushed_index'):
         | 
| 526 | 
            +
                                    self._last_flushed_index = 0
         | 
| 527 | 
            +
                                if len(self.metrics_history) - self._last_flushed_index >= flush_every:
         | 
| 528 | 
            +
                                    new_slice = self.metrics_history[self._last_flushed_index:]
         | 
| 529 | 
            +
                                    # Persist only the tail slice; merge code will union-append
         | 
| 530 | 
            +
                                    self._save_to_hf_dataset({'metrics': new_slice})
         | 
| 531 | 
            +
                                    self._last_flushed_index = len(self.metrics_history)
         | 
| 532 | 
            +
                            except Exception:
         | 
| 533 | 
            +
                                pass
         | 
| 534 |  | 
| 535 | 
             
                        logger.debug("Metrics logged: %s", metrics)
         | 
| 536 |  | 
|  | |
| 551 | 
             
                            "checkpoint_size": os.path.getsize(checkpoint_path) if os.path.exists(checkpoint_path) else 0
         | 
| 552 | 
             
                        }
         | 
| 553 |  | 
| 554 | 
            +
                        if self.use_trackio and self.trackio_client:
         | 
| 555 | 
             
                            result = self.trackio_client.log_parameters(
         | 
| 556 | 
             
                                experiment_id=self.experiment_id,
         | 
| 557 | 
             
                                parameters=checkpoint_info
         | 
|  | |
| 564 |  | 
| 565 | 
             
                        self.artifacts.append(checkpoint_path)
         | 
| 566 | 
             
                        # Also preserve checkpoint info in HF dataset
         | 
| 567 | 
            +
                        if self.use_dataset:
         | 
| 568 | 
            +
                            try:
         | 
| 569 | 
            +
                                self._save_to_hf_dataset({'artifacts': [checkpoint_path], **checkpoint_info})
         | 
| 570 | 
            +
                            except Exception:
         | 
| 571 | 
            +
                                pass
         | 
| 572 | 
             
                        logger.info("Checkpoint logged: %s", checkpoint_path)
         | 
| 573 |  | 
| 574 | 
             
                    except Exception as e:
         | 
|  | |
| 631 | 
             
                        summary['experiment_duration_hours'] = duration / 3600
         | 
| 632 |  | 
| 633 | 
             
                        # Log final summary to Trackio
         | 
| 634 | 
            +
                        if self.use_trackio and self.trackio_client:
         | 
| 635 | 
             
                            result = self.trackio_client.log_parameters(
         | 
| 636 | 
             
                                experiment_id=self.experiment_id,
         | 
| 637 | 
             
                                parameters=summary
         | 
|  | |
| 643 | 
             
                                logger.error("Failed to log training summary to Trackio: %s", result)
         | 
| 644 |  | 
| 645 | 
             
                        # Save to HF Dataset
         | 
| 646 | 
            +
                        if self.use_dataset:
         | 
| 647 | 
            +
                            self._save_to_hf_dataset(summary)
         | 
| 648 |  | 
| 649 | 
             
                        # Save summary locally
         | 
| 650 | 
             
                        summary_path = "training_summary_{}_{}.json".format(
         | 
|  | |
| 766 |  | 
| 767 | 
             
                def get_experiment_url(self) -> Optional[str]:
         | 
| 768 | 
             
                    """Get the URL to view the experiment in Trackio"""
         | 
| 769 | 
            +
                    if self.use_trackio and self.trackio_client and self.experiment_id:
         | 
| 770 | 
             
                        return "{}?tab=view_experiments".format(self.trackio_client.space_url)
         | 
| 771 | 
             
                    return None
         | 
| 772 |  | 
|  | |
| 779 | 
             
                    """
         | 
| 780 | 
             
                    logger.info(f"🔚 Closing monitoring session with status: {final_status}")
         | 
| 781 |  | 
| 782 | 
            +
                    if self.use_trackio and self.trackio_client:
         | 
| 783 | 
             
                        try:
         | 
| 784 | 
             
                            # Mark experiment as completed in Trackio
         | 
| 785 | 
             
                            result = self.trackio_client.update_experiment_status(
         | 
|  | |
| 794 | 
             
                            logger.error("❌ Failed to close Trackio monitoring session: %s", e)
         | 
| 795 |  | 
| 796 | 
             
                    # Final save to HF Dataset with proper status update
         | 
| 797 | 
            +
                    if self.use_dataset and self.dataset_manager:
         | 
| 798 | 
             
                        try:
         | 
| 799 | 
             
                            # Update experiment with final status without clobbering metrics
         | 
| 800 | 
             
                            final_experiment_data = {
         | 
|  | |
| 833 | 
             
                    log_metrics=getattr(config, 'log_metrics', True),
         | 
| 834 | 
             
                    log_config=getattr(config, 'log_config', True),
         | 
| 835 | 
             
                    hf_token=getattr(config, 'hf_token', None),
         | 
| 836 | 
            +
                    dataset_repo=getattr(config, 'dataset_repo', None),
         | 
| 837 | 
            +
                    monitoring_mode=getattr(config, 'monitoring_mode', os.environ.get('MONITORING_MODE', 'both'))
         | 
| 838 | 
             
                ) 
         | 
    	
        src/trackio.py
    CHANGED
    
    | @@ -49,6 +49,11 @@ def init( | |
| 49 | 
             
                    trackio_token = kwargs.get('trackio_token') or os.environ.get('TRACKIO_TOKEN')
         | 
| 50 | 
             
                    hf_token = kwargs.get('hf_token') or os.environ.get('HF_TOKEN')
         | 
| 51 | 
             
                    dataset_repo = kwargs.get('dataset_repo') or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 52 |  | 
| 53 | 
             
                    # Use experiment_name if provided, otherwise use project_name
         | 
| 54 | 
             
                    exp_name = experiment_name or project_name
         | 
| @@ -63,7 +68,8 @@ def init( | |
| 63 | 
             
                        log_metrics=True,
         | 
| 64 | 
             
                        log_config=True,
         | 
| 65 | 
             
                        hf_token=hf_token,
         | 
| 66 | 
            -
                        dataset_repo=dataset_repo
         | 
|  | |
| 67 | 
             
                    )
         | 
| 68 | 
             
                    # The monitor constructor creates the experiment remotely and sets
         | 
| 69 | 
             
                    # `experiment_id`. Do NOT overwrite it with a locally generated ID.
         | 
| @@ -229,6 +235,7 @@ class TrackioConfig: | |
| 229 | 
             
                    self.trackio_token = os.environ.get('TRACKIO_TOKEN')
         | 
| 230 | 
             
                    self.hf_token = os.environ.get('HF_TOKEN')
         | 
| 231 | 
             
                    self.dataset_repo = os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
         | 
|  | |
| 232 |  | 
| 233 | 
             
                def update(self, config_dict: Dict[str, Any] = None, **kwargs):
         | 
| 234 | 
             
                    """
         | 
|  | |
| 49 | 
             
                    trackio_token = kwargs.get('trackio_token') or os.environ.get('TRACKIO_TOKEN')
         | 
| 50 | 
             
                    hf_token = kwargs.get('hf_token') or os.environ.get('HF_TOKEN')
         | 
| 51 | 
             
                    dataset_repo = kwargs.get('dataset_repo') or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
         | 
| 52 | 
            +
                    monitoring_mode = (
         | 
| 53 | 
            +
                        kwargs.get('monitoring_mode')
         | 
| 54 | 
            +
                        or os.environ.get('MONITORING_MODE')
         | 
| 55 | 
            +
                        or 'both'
         | 
| 56 | 
            +
                    )
         | 
| 57 |  | 
| 58 | 
             
                    # Use experiment_name if provided, otherwise use project_name
         | 
| 59 | 
             
                    exp_name = experiment_name or project_name
         | 
|  | |
| 68 | 
             
                        log_metrics=True,
         | 
| 69 | 
             
                        log_config=True,
         | 
| 70 | 
             
                        hf_token=hf_token,
         | 
| 71 | 
            +
                        dataset_repo=dataset_repo,
         | 
| 72 | 
            +
                        monitoring_mode=monitoring_mode,
         | 
| 73 | 
             
                    )
         | 
| 74 | 
             
                    # The monitor constructor creates the experiment remotely and sets
         | 
| 75 | 
             
                    # `experiment_id`. Do NOT overwrite it with a locally generated ID.
         | 
|  | |
| 235 | 
             
                    self.trackio_token = os.environ.get('TRACKIO_TOKEN')
         | 
| 236 | 
             
                    self.hf_token = os.environ.get('HF_TOKEN')
         | 
| 237 | 
             
                    self.dataset_repo = os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
         | 
| 238 | 
            +
                    self.monitoring_mode = os.environ.get('MONITORING_MODE', 'both')
         | 
| 239 |  | 
| 240 | 
             
                def update(self, config_dict: Dict[str, Any] = None, **kwargs):
         | 
| 241 | 
             
                    """
         | 
    	
        src/train.py
    CHANGED
    
    | @@ -154,21 +154,25 @@ def main(): | |
| 154 |  | 
| 155 | 
             
                logger.info(f"Output path: {output_path}")
         | 
| 156 |  | 
| 157 | 
            -
                # Initialize monitoring
         | 
| 158 | 
             
                monitor = None
         | 
| 159 | 
            -
                 | 
| 160 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 161 | 
             
                        monitor = create_monitor_from_config(config, args.experiment_name)
         | 
| 162 | 
             
                        logger.info(f"✅ Monitoring initialized for experiment: {monitor.experiment_name}")
         | 
|  | |
| 163 | 
             
                        logger.info(f"📊 Dataset repository: {monitor.dataset_repo}")
         | 
| 164 | 
            -
                        
         | 
| 165 | 
             
                        # Log configuration
         | 
| 166 | 
             
                        config_dict = {k: v for k, v in vars(config).items() if not k.startswith('_')}
         | 
| 167 | 
             
                        monitor.log_configuration(config_dict)
         | 
| 168 | 
            -
             | 
| 169 | 
            -
                     | 
| 170 | 
            -
             | 
| 171 | 
            -
                        logger.warning("Continuing without monitoring...")
         | 
| 172 |  | 
| 173 | 
             
                # Initialize model
         | 
| 174 | 
             
                model = SmolLM3Model(
         | 
|  | |
| 154 |  | 
| 155 | 
             
                logger.info(f"Output path: {output_path}")
         | 
| 156 |  | 
| 157 | 
            +
                # Initialize monitoring (supports local-only mode)
         | 
| 158 | 
             
                monitor = None
         | 
| 159 | 
            +
                try:
         | 
| 160 | 
            +
                    monitoring_mode = getattr(config, 'monitoring_mode', os.environ.get('MONITORING_MODE', 'both')).lower()
         | 
| 161 | 
            +
                    should_create_monitor = (
         | 
| 162 | 
            +
                        monitoring_mode in ('both', 'dataset', 'trackio', 'none')
         | 
| 163 | 
            +
                        and (getattr(config, 'enable_tracking', True) or monitoring_mode in ('dataset', 'none'))
         | 
| 164 | 
            +
                    )
         | 
| 165 | 
            +
                    if should_create_monitor:
         | 
| 166 | 
             
                        monitor = create_monitor_from_config(config, args.experiment_name)
         | 
| 167 | 
             
                        logger.info(f"✅ Monitoring initialized for experiment: {monitor.experiment_name}")
         | 
| 168 | 
            +
                        logger.info(f"📊 Monitoring mode: {monitor.monitoring_mode}")
         | 
| 169 | 
             
                        logger.info(f"📊 Dataset repository: {monitor.dataset_repo}")
         | 
|  | |
| 170 | 
             
                        # Log configuration
         | 
| 171 | 
             
                        config_dict = {k: v for k, v in vars(config).items() if not k.startswith('_')}
         | 
| 172 | 
             
                        monitor.log_configuration(config_dict)
         | 
| 173 | 
            +
                except Exception as e:
         | 
| 174 | 
            +
                    logger.error(f"Failed to initialize monitoring: {e}")
         | 
| 175 | 
            +
                    logger.warning("Continuing without monitoring...")
         | 
|  | |
| 176 |  | 
| 177 | 
             
                # Initialize model
         | 
| 178 | 
             
                model = SmolLM3Model(
         | 
    	
        templates/model_card.md
    CHANGED
    
    | @@ -11,7 +11,7 @@ tags: | |
| 11 | 
             
            - text-generation
         | 
| 12 | 
             
            - tonic
         | 
| 13 | 
             
            - legml
         | 
| 14 | 
            -
             | 
| 15 | 
             
            pipeline_tag: text-generation
         | 
| 16 | 
             
            base_model: {{base_model}}
         | 
| 17 | 
             
            {{#if dataset_name}}
         | 
|  | |
| 11 | 
             
            - text-generation
         | 
| 12 | 
             
            - tonic
         | 
| 13 | 
             
            - legml
         | 
| 14 | 
            +
            {{#if quantized_models}}- quantized{{/if}}
         | 
| 15 | 
             
            pipeline_tag: text-generation
         | 
| 16 | 
             
            base_model: {{base_model}}
         | 
| 17 | 
             
            {{#if dataset_name}}
         | 
    	
        templates/spaces/demo_gpt/app.py
    CHANGED
    
    | @@ -18,6 +18,12 @@ LORA_MODEL_ID = os.getenv('LORA_MODEL_ID', os.getenv('HF_MODEL_ID', 'Tonic/gpt-o | |
| 18 | 
             
            MODEL_NAME = os.getenv('MODEL_NAME', 'GPT-OSS Multilingual Reasoner')
         | 
| 19 | 
             
            MODEL_SUBFOLDER = os.getenv('MODEL_SUBFOLDER', '')
         | 
| 20 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 21 | 
             
            # If the LORA_MODEL_ID is the same as BASE_MODEL_ID, this is a merged model, not LoRA
         | 
| 22 | 
             
            USE_LORA = LORA_MODEL_ID != BASE_MODEL_ID and not LORA_MODEL_ID.startswith(BASE_MODEL_ID)
         | 
| 23 |  | 
| @@ -130,7 +136,7 @@ def format_analysis_response(text): | |
| 130 | 
             
                return cleaned
         | 
| 131 |  | 
| 132 | 
             
            @spaces.GPU(duration=60)
         | 
| 133 | 
            -
            def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
         | 
| 134 | 
             
                if not input_data.strip():
         | 
| 135 | 
             
                    yield "Please enter a prompt."
         | 
| 136 | 
             
                    return
         | 
| @@ -140,14 +146,37 @@ def generate_response(input_data, chat_history, max_new_tokens, system_prompt, t | |
| 140 | 
             
                logging.info(f"[System] {system_prompt} | Temp={temperature} | Max tokens={max_new_tokens}")
         | 
| 141 |  | 
| 142 | 
             
                new_message = {"role": "user", "content": input_data}
         | 
| 143 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 144 | 
             
                processed_history = format_conversation_history(chat_history)
         | 
| 145 | 
            -
                messages = system_message + processed_history + [new_message]
         | 
| 146 | 
            -
                 | 
| 147 | 
            -
                     | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 151 |  | 
| 152 | 
             
                # Create streamer for proper streaming
         | 
| 153 | 
             
                streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
         | 
| @@ -211,12 +240,30 @@ demo = gr.ChatInterface( | |
| 211 | 
             
                fn=generate_response,
         | 
| 212 | 
             
                additional_inputs=[
         | 
| 213 | 
             
                    gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 214 | 
             
                    gr.Textbox(
         | 
| 215 | 
             
                        label="System Prompt",
         | 
| 216 | 
            -
                        value= | 
| 217 | 
             
                        lines=4,
         | 
| 218 | 
             
                        placeholder="Change system prompt"
         | 
| 219 | 
             
                    ),
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 220 | 
             
                    gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
         | 
| 221 | 
             
                    gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
         | 
| 222 | 
             
                    gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
         | 
|  | |
| 18 | 
             
            MODEL_NAME = os.getenv('MODEL_NAME', 'GPT-OSS Multilingual Reasoner')
         | 
| 19 | 
             
            MODEL_SUBFOLDER = os.getenv('MODEL_SUBFOLDER', '')
         | 
| 20 |  | 
| 21 | 
            +
            # Optional persona and prompts derived from training config
         | 
| 22 | 
            +
            MODEL_IDENTITY = os.getenv('MODEL_IDENTITY', '')
         | 
| 23 | 
            +
            DEFAULT_SYSTEM_PROMPT = os.getenv('SYSTEM_MESSAGE', MODEL_IDENTITY or 'You are a helpful assistant. Reasoning: medium')
         | 
| 24 | 
            +
            DEFAULT_DEVELOPER_PROMPT = os.getenv('DEVELOPER_MESSAGE', '')
         | 
| 25 | 
            +
            DEFAULT_REASONING_EFFORT = os.getenv('REASONING_EFFORT', 'medium')
         | 
| 26 | 
            +
             | 
| 27 | 
             
            # If the LORA_MODEL_ID is the same as BASE_MODEL_ID, this is a merged model, not LoRA
         | 
| 28 | 
             
            USE_LORA = LORA_MODEL_ID != BASE_MODEL_ID and not LORA_MODEL_ID.startswith(BASE_MODEL_ID)
         | 
| 29 |  | 
|  | |
| 136 | 
             
                return cleaned
         | 
| 137 |  | 
| 138 | 
             
            @spaces.GPU(duration=60)
         | 
| 139 | 
            +
            def generate_response(input_data, chat_history, max_new_tokens, model_identity, system_prompt, developer_prompt, reasoning_effort, temperature, top_p, top_k, repetition_penalty):
         | 
| 140 | 
             
                if not input_data.strip():
         | 
| 141 | 
             
                    yield "Please enter a prompt."
         | 
| 142 | 
             
                    return
         | 
|  | |
| 146 | 
             
                logging.info(f"[System] {system_prompt} | Temp={temperature} | Max tokens={max_new_tokens}")
         | 
| 147 |  | 
| 148 | 
             
                new_message = {"role": "user", "content": input_data}
         | 
| 149 | 
            +
                # Combine model identity with system prompt for a single system message
         | 
| 150 | 
            +
                combined_parts = []
         | 
| 151 | 
            +
                if model_identity and model_identity.strip():
         | 
| 152 | 
            +
                    combined_parts.append(model_identity.strip())
         | 
| 153 | 
            +
                if system_prompt and system_prompt.strip():
         | 
| 154 | 
            +
                    combined_parts.append(system_prompt.strip())
         | 
| 155 | 
            +
                if reasoning_effort and isinstance(reasoning_effort, str) and reasoning_effort.strip():
         | 
| 156 | 
            +
                    # Append explicit reasoning directive
         | 
| 157 | 
            +
                    combined_parts.append(f"Reasoning: {reasoning_effort.strip()}")
         | 
| 158 | 
            +
                combined_system = "\n\n".join(combined_parts).strip()
         | 
| 159 | 
            +
                system_message = ([{"role": "system", "content": combined_system}] if combined_system else [])
         | 
| 160 | 
            +
                developer_message = [{"role": "developer", "content": developer_prompt}] if developer_prompt else []
         | 
| 161 | 
             
                processed_history = format_conversation_history(chat_history)
         | 
| 162 | 
            +
                messages = system_message + developer_message + processed_history + [new_message]
         | 
| 163 | 
            +
                try:
         | 
| 164 | 
            +
                    prompt = tokenizer.apply_chat_template(
         | 
| 165 | 
            +
                        messages,
         | 
| 166 | 
            +
                        tokenize=False,
         | 
| 167 | 
            +
                        add_generation_prompt=True
         | 
| 168 | 
            +
                    )
         | 
| 169 | 
            +
                except Exception:
         | 
| 170 | 
            +
                    # Fallback: merge developer prompt into system prompt if template doesn't support 'developer' role
         | 
| 171 | 
            +
                    fallback_sys = combined_system
         | 
| 172 | 
            +
                    if developer_prompt:
         | 
| 173 | 
            +
                        fallback_sys = (fallback_sys + ("\n\n[Developer]\n" if fallback_sys else "[Developer]\n") + developer_prompt).strip()
         | 
| 174 | 
            +
                    fallback_messages = ([{"role": "system", "content": fallback_sys}] if fallback_sys else []) + processed_history + [new_message]
         | 
| 175 | 
            +
                    prompt = tokenizer.apply_chat_template(
         | 
| 176 | 
            +
                        fallback_messages,
         | 
| 177 | 
            +
                        tokenize=False,
         | 
| 178 | 
            +
                        add_generation_prompt=True
         | 
| 179 | 
            +
                    )
         | 
| 180 |  | 
| 181 | 
             
                # Create streamer for proper streaming
         | 
| 182 | 
             
                streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
         | 
|  | |
| 240 | 
             
                fn=generate_response,
         | 
| 241 | 
             
                additional_inputs=[
         | 
| 242 | 
             
                    gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
         | 
| 243 | 
            +
                    gr.Textbox(
         | 
| 244 | 
            +
                        label="Model Identity",
         | 
| 245 | 
            +
                        value=MODEL_IDENTITY,
         | 
| 246 | 
            +
                        lines=3,
         | 
| 247 | 
            +
                        placeholder="Optional identity/persona for the model"
         | 
| 248 | 
            +
                    ),
         | 
| 249 | 
             
                    gr.Textbox(
         | 
| 250 | 
             
                        label="System Prompt",
         | 
| 251 | 
            +
                        value=DEFAULT_SYSTEM_PROMPT,
         | 
| 252 | 
             
                        lines=4,
         | 
| 253 | 
             
                        placeholder="Change system prompt"
         | 
| 254 | 
             
                    ),
         | 
| 255 | 
            +
                    gr.Textbox(
         | 
| 256 | 
            +
                        label="Developer Prompt",
         | 
| 257 | 
            +
                        value=DEFAULT_DEVELOPER_PROMPT,
         | 
| 258 | 
            +
                        lines=4,
         | 
| 259 | 
            +
                        placeholder="Optional developer instructions"
         | 
| 260 | 
            +
                    ),
         | 
| 261 | 
            +
                    gr.Dropdown(
         | 
| 262 | 
            +
                        label="Reasoning Effort",
         | 
| 263 | 
            +
                        choices=["low", "medium", "high"],
         | 
| 264 | 
            +
                        value=DEFAULT_REASONING_EFFORT,
         | 
| 265 | 
            +
                        interactive=True,
         | 
| 266 | 
            +
                    ),
         | 
| 267 | 
             
                    gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
         | 
| 268 | 
             
                    gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
         | 
| 269 | 
             
                    gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
         | 
    	
        templates/spaces/trackio/app.py
    CHANGED
    
    | @@ -1143,33 +1143,63 @@ def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Fig | |
| 1143 | 
             
                        )
         | 
| 1144 | 
             
                        return fig
         | 
| 1145 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1146 | 
             
                    # Ensure steps are numeric and monotonically increasing to avoid zig-zag lines
         | 
| 1147 | 
             
                    try:
         | 
| 1148 | 
             
                        df = df.copy()
         | 
| 1149 | 
            -
                        #  | 
| 1150 | 
            -
                         | 
| 1151 | 
            -
             | 
| 1152 | 
            -
             | 
| 1153 | 
            -
             | 
| 1154 | 
            -
             | 
| 1155 | 
            -
             | 
| 1156 | 
            -
             | 
| 1157 | 
            -
             | 
|  | |
|  | |
| 1158 | 
             
                        else:
         | 
| 1159 | 
            -
                             | 
| 1160 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1161 | 
             
                    except Exception:
         | 
| 1162 | 
            -
                         | 
| 1163 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 1164 | 
             
                    fig.update_layout(
         | 
| 1165 | 
            -
                        xaxis_title="Training Step",
         | 
| 1166 | 
             
                        yaxis_title=metric_name.title(),
         | 
| 1167 | 
             
                        hovermode='x unified'
         | 
| 1168 | 
             
                    )
         | 
| 1169 | 
            -
                    #  | 
| 1170 | 
             
                    try:
         | 
| 1171 | 
             
                        for trace in fig.data:
         | 
| 1172 | 
            -
                            trace.connectgaps = False
         | 
|  | |
|  | |
| 1173 | 
             
                    except Exception:
         | 
| 1174 | 
             
                        pass
         | 
| 1175 | 
             
                    return fig
         | 
| @@ -1547,6 +1577,16 @@ def create_combined_metrics_plot(experiment_id: str) -> go.Figure: | |
| 1547 | 
             
                    # Define colors for different metrics
         | 
| 1548 | 
             
                    colors = ['blue', 'red', 'green', 'orange', 'purple', 'brown', 'pink', 'gray', 'cyan', 'magenta']
         | 
| 1549 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1550 | 
             
                    for i, metric in enumerate(numeric_cols):
         | 
| 1551 | 
             
                        if metric in df.columns and not df[metric].isna().all():
         | 
| 1552 | 
             
                            row = (i // n_cols) + 1
         | 
| @@ -1556,31 +1596,54 @@ def create_combined_metrics_plot(experiment_id: str) -> go.Figure: | |
| 1556 | 
             
                            # Clean steps for each subplot too
         | 
| 1557 | 
             
                            try:
         | 
| 1558 | 
             
                                df_sub = df.copy()
         | 
| 1559 | 
            -
                                 | 
| 1560 | 
            -
             | 
| 1561 | 
            -
             | 
| 1562 | 
            -
             | 
| 1563 | 
            -
             | 
| 1564 | 
            -
             | 
| 1565 | 
            -
                                     | 
|  | |
|  | |
|  | |
| 1566 | 
             
                                else:
         | 
| 1567 | 
            -
                                     | 
| 1568 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1569 | 
             
                            except Exception:
         | 
| 1570 | 
             
                                df_sub = df
         | 
|  | |
|  | |
|  | |
| 1571 | 
             
                            fig.add_trace(
         | 
| 1572 | 
             
                                go.Scatter(
         | 
| 1573 | 
            -
                                    x= | 
| 1574 | 
            -
                                    y= | 
| 1575 | 
             
                                    mode='lines+markers',
         | 
| 1576 | 
             
                                    name=metric,
         | 
| 1577 | 
             
                                    line=dict(width=2, color=color),
         | 
| 1578 | 
             
                                    marker=dict(size=4, color=color),
         | 
| 1579 | 
             
                                    showlegend=False,
         | 
| 1580 | 
            -
                                    connectgaps=False
         | 
| 1581 | 
             
                                ),
         | 
| 1582 | 
             
                                row=row, col=col
         | 
| 1583 | 
             
                            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 1584 |  | 
| 1585 | 
             
                    fig.update_layout(
         | 
| 1586 | 
             
                        title=f"All Metrics for Experiment {experiment_id}",
         | 
| @@ -1677,7 +1740,7 @@ def create_experiment_comparison_from_selection(selected_experiments: list, sele | |
| 1677 | 
             
                            plot_bgcolor='white', paper_bgcolor='white'
         | 
| 1678 | 
             
                        )
         | 
| 1679 | 
             
                        return fig
         | 
| 1680 | 
            -
             | 
| 1681 | 
             
                    if not selected_metrics:
         | 
| 1682 | 
             
                        fig = go.Figure()
         | 
| 1683 | 
             
                        fig.add_annotation(
         | 
| @@ -1691,10 +1754,180 @@ def create_experiment_comparison_from_selection(selected_experiments: list, sele | |
| 1691 | 
             
                            plot_bgcolor='white', paper_bgcolor='white'
         | 
| 1692 | 
             
                        )
         | 
| 1693 | 
             
                        return fig
         | 
| 1694 | 
            -
             | 
| 1695 | 
            -
                    #  | 
| 1696 | 
            -
                     | 
| 1697 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1698 |  | 
| 1699 | 
             
                except Exception as e:
         | 
| 1700 | 
             
                    logger.error(f"Error creating comparison from selection: {str(e)}")
         | 
|  | |
| 1143 | 
             
                        )
         | 
| 1144 | 
             
                        return fig
         | 
| 1145 |  | 
| 1146 | 
            +
                    # Helper predicates
         | 
| 1147 | 
            +
                    def _is_eval_metric(name: str) -> bool:
         | 
| 1148 | 
            +
                        return name.startswith('eval_') or name.startswith('eval/')
         | 
| 1149 | 
            +
             | 
| 1150 | 
            +
                    def _is_system_metric(name: str) -> bool:
         | 
| 1151 | 
            +
                        import re
         | 
| 1152 | 
            +
                        if name in ("cpu_percent", "memory_percent"):
         | 
| 1153 | 
            +
                            return True
         | 
| 1154 | 
            +
                        return re.match(r"^gpu_\d+_(memory_allocated|memory_reserved|utilization)$", name) is not None
         | 
| 1155 | 
            +
             | 
| 1156 | 
             
                    # Ensure steps are numeric and monotonically increasing to avoid zig-zag lines
         | 
| 1157 | 
             
                    try:
         | 
| 1158 | 
             
                        df = df.copy()
         | 
| 1159 | 
            +
                        # Choose x-axis: time for system metrics, step otherwise
         | 
| 1160 | 
            +
                        use_time_axis = _is_system_metric(metric_name)
         | 
| 1161 | 
            +
             | 
| 1162 | 
            +
                        if use_time_axis:
         | 
| 1163 | 
            +
                            # Convert timestamp to datetime for nicer axis rendering
         | 
| 1164 | 
            +
                            df['time'] = pd.to_datetime(df.get('timestamp', ''), errors='coerce')
         | 
| 1165 | 
            +
                            # Fallback order if timestamps are missing
         | 
| 1166 | 
            +
                            if df['time'].isna().all():
         | 
| 1167 | 
            +
                                df['time'] = range(1, len(df) + 1)
         | 
| 1168 | 
            +
                            df.sort_values('time', inplace=True)
         | 
| 1169 | 
            +
                            x_field = 'time'
         | 
| 1170 | 
             
                        else:
         | 
| 1171 | 
            +
                            # If step looks constant or missing, try to derive it from a common field
         | 
| 1172 | 
            +
                            if 'step' not in df or df['step'].nunique() <= 1:
         | 
| 1173 | 
            +
                                for alt in ['train/global_step', 'global_step', 'train/step']:
         | 
| 1174 | 
            +
                                    if alt in df.columns and df[alt].notna().any():
         | 
| 1175 | 
            +
                                        df['step'] = pd.to_numeric(df[alt], errors='coerce')
         | 
| 1176 | 
            +
                                        break
         | 
| 1177 | 
            +
                            # If still missing or constant, fallback to an inferred counter by order of arrival
         | 
| 1178 | 
            +
                            if 'step' not in df.columns or df['step'].isna().all() or df['step'].nunique() <= 1:
         | 
| 1179 | 
            +
                                df['step'] = range(1, len(df) + 1)
         | 
| 1180 | 
            +
                            else:
         | 
| 1181 | 
            +
                                df['step'] = pd.to_numeric(df.get('step', -1), errors='coerce').fillna(-1)
         | 
| 1182 | 
            +
                            df.sort_values('step', inplace=True)
         | 
| 1183 | 
            +
                            x_field = 'step'
         | 
| 1184 | 
             
                    except Exception:
         | 
| 1185 | 
            +
                        x_field = 'step'
         | 
| 1186 | 
            +
                    # Filter rows where the metric is present to ensure connected lines
         | 
| 1187 | 
            +
                    try:
         | 
| 1188 | 
            +
                        plot_df = df[[x_field, metric_name]].dropna(subset=[metric_name]).copy()
         | 
| 1189 | 
            +
                    except Exception:
         | 
| 1190 | 
            +
                        plot_df = df
         | 
| 1191 | 
            +
                    fig = px.line(plot_df, x=x_field, y=metric_name, title=f'{metric_name} over time')
         | 
| 1192 | 
             
                    fig.update_layout(
         | 
| 1193 | 
            +
                        xaxis_title="Time" if (metric_name in ("cpu_percent", "memory_percent") or metric_name.startswith('gpu_')) else "Training Step",
         | 
| 1194 | 
             
                        yaxis_title=metric_name.title(),
         | 
| 1195 | 
             
                        hovermode='x unified'
         | 
| 1196 | 
             
                    )
         | 
| 1197 | 
            +
                    # Connect points for evaluation metrics, avoid connecting gaps for others
         | 
| 1198 | 
             
                    try:
         | 
| 1199 | 
             
                        for trace in fig.data:
         | 
| 1200 | 
            +
                            trace.connectgaps = True if _is_eval_metric(metric_name) else False
         | 
| 1201 | 
            +
                            # Force line+markers to visually connect points
         | 
| 1202 | 
            +
                            trace.mode = 'lines+markers'
         | 
| 1203 | 
             
                    except Exception:
         | 
| 1204 | 
             
                        pass
         | 
| 1205 | 
             
                    return fig
         | 
|  | |
| 1577 | 
             
                    # Define colors for different metrics
         | 
| 1578 | 
             
                    colors = ['blue', 'red', 'green', 'orange', 'purple', 'brown', 'pink', 'gray', 'cyan', 'magenta']
         | 
| 1579 |  | 
| 1580 | 
            +
                    # Helper predicates
         | 
| 1581 | 
            +
                    def _is_eval_metric(name: str) -> bool:
         | 
| 1582 | 
            +
                        return name.startswith('eval_') or name.startswith('eval/')
         | 
| 1583 | 
            +
             | 
| 1584 | 
            +
                    def _is_system_metric(name: str) -> bool:
         | 
| 1585 | 
            +
                        import re
         | 
| 1586 | 
            +
                        if name in ("cpu_percent", "memory_percent"):
         | 
| 1587 | 
            +
                            return True
         | 
| 1588 | 
            +
                        return re.match(r"^gpu_\d+_(memory_allocated|memory_reserved|utilization)$", name) is not None
         | 
| 1589 | 
            +
             | 
| 1590 | 
             
                    for i, metric in enumerate(numeric_cols):
         | 
| 1591 | 
             
                        if metric in df.columns and not df[metric].isna().all():
         | 
| 1592 | 
             
                            row = (i // n_cols) + 1
         | 
|  | |
| 1596 | 
             
                            # Clean steps for each subplot too
         | 
| 1597 | 
             
                            try:
         | 
| 1598 | 
             
                                df_sub = df.copy()
         | 
| 1599 | 
            +
                                use_time_axis = _is_system_metric(metric)
         | 
| 1600 | 
            +
                                if use_time_axis:
         | 
| 1601 | 
            +
                                    df_sub['time'] = pd.to_datetime(df_sub.get('timestamp', ''), errors='coerce')
         | 
| 1602 | 
            +
                                    if df_sub['time'].isna().all():
         | 
| 1603 | 
            +
                                        df_sub['time'] = range(1, len(df_sub) + 1)
         | 
| 1604 | 
            +
                                    df_sub.sort_values('time', inplace=True)
         | 
| 1605 | 
            +
                                    # Filter to available metric points only to ensure connected lines
         | 
| 1606 | 
            +
                                    metric_mask = df_sub[metric].notna()
         | 
| 1607 | 
            +
                                    x_vals = df_sub.loc[metric_mask, 'time'].tolist()
         | 
| 1608 | 
            +
                                    y_vals = df_sub.loc[metric_mask, metric].tolist()
         | 
| 1609 | 
             
                                else:
         | 
| 1610 | 
            +
                                    if 'step' not in df_sub or df_sub['step'].nunique() <= 1:
         | 
| 1611 | 
            +
                                        for alt in ['train/global_step', 'global_step', 'train/step']:
         | 
| 1612 | 
            +
                                            if alt in df_sub.columns and df_sub[alt].notna().any():
         | 
| 1613 | 
            +
                                                df_sub['step'] = pd.to_numeric(df_sub[alt], errors='coerce')
         | 
| 1614 | 
            +
                                                break
         | 
| 1615 | 
            +
                                    if 'step' not in df_sub.columns or df_sub['step'].isna().all() or df_sub['step'].nunique() <= 1:
         | 
| 1616 | 
            +
                                        df_sub['step'] = range(1, len(df_sub) + 1)
         | 
| 1617 | 
            +
                                    else:
         | 
| 1618 | 
            +
                                        df_sub['step'] = pd.to_numeric(df_sub.get('step', -1), errors='coerce').fillna(-1)
         | 
| 1619 | 
            +
                                    df_sub.sort_values('step', inplace=True)
         | 
| 1620 | 
            +
                                    # Filter to available metric points only to ensure connected lines
         | 
| 1621 | 
            +
                                    metric_mask = df_sub[metric].notna()
         | 
| 1622 | 
            +
                                    x_vals = df_sub.loc[metric_mask, 'step'].tolist()
         | 
| 1623 | 
            +
                                    y_vals = df_sub.loc[metric_mask, metric].tolist()
         | 
| 1624 | 
             
                            except Exception:
         | 
| 1625 | 
             
                                df_sub = df
         | 
| 1626 | 
            +
                                metric_mask = df_sub[metric].notna() if metric in df_sub else []
         | 
| 1627 | 
            +
                                x_vals = df_sub.get('step', list(range(1, len(df_sub) + 1))).tolist()
         | 
| 1628 | 
            +
                                y_vals = df_sub.get(metric, []).tolist()
         | 
| 1629 | 
             
                            fig.add_trace(
         | 
| 1630 | 
             
                                go.Scatter(
         | 
| 1631 | 
            +
                                    x=x_vals,
         | 
| 1632 | 
            +
                                    y=y_vals,
         | 
| 1633 | 
             
                                    mode='lines+markers',
         | 
| 1634 | 
             
                                    name=metric,
         | 
| 1635 | 
             
                                    line=dict(width=2, color=color),
         | 
| 1636 | 
             
                                    marker=dict(size=4, color=color),
         | 
| 1637 | 
             
                                    showlegend=False,
         | 
| 1638 | 
            +
                                    connectgaps=True if _is_eval_metric(metric) else False
         | 
| 1639 | 
             
                                ),
         | 
| 1640 | 
             
                                row=row, col=col
         | 
| 1641 | 
             
                            )
         | 
| 1642 | 
            +
                            # Set axis titles per subplot for clarity
         | 
| 1643 | 
            +
                            try:
         | 
| 1644 | 
            +
                                fig.update_xaxes(title_text=("Time" if use_time_axis else "Training Step"), row=row, col=col)
         | 
| 1645 | 
            +
                            except Exception:
         | 
| 1646 | 
            +
                                pass
         | 
| 1647 |  | 
| 1648 | 
             
                    fig.update_layout(
         | 
| 1649 | 
             
                        title=f"All Metrics for Experiment {experiment_id}",
         | 
|  | |
| 1740 | 
             
                            plot_bgcolor='white', paper_bgcolor='white'
         | 
| 1741 | 
             
                        )
         | 
| 1742 | 
             
                        return fig
         | 
| 1743 | 
            +
             | 
| 1744 | 
             
                    if not selected_metrics:
         | 
| 1745 | 
             
                        fig = go.Figure()
         | 
| 1746 | 
             
                        fig.add_annotation(
         | 
|  | |
| 1754 | 
             
                            plot_bgcolor='white', paper_bgcolor='white'
         | 
| 1755 | 
             
                        )
         | 
| 1756 | 
             
                        return fig
         | 
| 1757 | 
            +
             | 
| 1758 | 
            +
                    # Prepare dataframes for each selected experiment once
         | 
| 1759 | 
            +
                    experiment_to_dataframe = {}
         | 
| 1760 | 
            +
                    for experiment_id in selected_experiments:
         | 
| 1761 | 
            +
                        try:
         | 
| 1762 | 
            +
                            experiment_to_dataframe[experiment_id] = get_metrics_dataframe(experiment_id)
         | 
| 1763 | 
            +
                        except Exception:
         | 
| 1764 | 
            +
                            experiment_to_dataframe[experiment_id] = pd.DataFrame()
         | 
| 1765 | 
            +
             | 
| 1766 | 
            +
                    # Setup subplots: one subplot per selected metric
         | 
| 1767 | 
            +
                    from plotly.subplots import make_subplots
         | 
| 1768 | 
            +
             | 
| 1769 | 
            +
                    num_metrics = len(selected_metrics)
         | 
| 1770 | 
            +
                    num_columns = min(3, num_metrics)
         | 
| 1771 | 
            +
                    num_rows = (num_metrics + num_columns - 1) // num_columns
         | 
| 1772 | 
            +
             | 
| 1773 | 
            +
                    fig = make_subplots(
         | 
| 1774 | 
            +
                        rows=num_rows,
         | 
| 1775 | 
            +
                        cols=num_columns,
         | 
| 1776 | 
            +
                        subplot_titles=selected_metrics,
         | 
| 1777 | 
            +
                        vertical_spacing=0.05,
         | 
| 1778 | 
            +
                        horizontal_spacing=0.1
         | 
| 1779 | 
            +
                    )
         | 
| 1780 | 
            +
             | 
| 1781 | 
            +
                    # Color palette for experiments (consistent colors across subplots)
         | 
| 1782 | 
            +
                    try:
         | 
| 1783 | 
            +
                        palette = px.colors.qualitative.Plotly
         | 
| 1784 | 
            +
                    except Exception:
         | 
| 1785 | 
            +
                        palette = [
         | 
| 1786 | 
            +
                            'blue', 'red', 'green', 'orange', 'purple', 'brown',
         | 
| 1787 | 
            +
                            'pink', 'gray', 'cyan', 'magenta'
         | 
| 1788 | 
            +
                        ]
         | 
| 1789 | 
            +
                    experiment_to_color = {
         | 
| 1790 | 
            +
                        exp_id: palette[idx % len(palette)] for idx, exp_id in enumerate(selected_experiments)
         | 
| 1791 | 
            +
                    }
         | 
| 1792 | 
            +
             | 
| 1793 | 
            +
                    # Helper predicates (match logic used elsewhere in this file)
         | 
| 1794 | 
            +
                    def _is_eval_metric(name: str) -> bool:
         | 
| 1795 | 
            +
                        return name.startswith('eval_') or name.startswith('eval/')
         | 
| 1796 | 
            +
             | 
| 1797 | 
            +
                    def _is_system_metric(name: str) -> bool:
         | 
| 1798 | 
            +
                        import re
         | 
| 1799 | 
            +
                        if name in ("cpu_percent", "memory_percent"):
         | 
| 1800 | 
            +
                            return True
         | 
| 1801 | 
            +
                        return re.match(r"^gpu_\d+_(memory_allocated|memory_reserved|utilization)$", name) is not None
         | 
| 1802 | 
            +
             | 
| 1803 | 
            +
                    any_trace_added = False
         | 
| 1804 | 
            +
             | 
| 1805 | 
            +
                    for metric_index, metric_name in enumerate(selected_metrics):
         | 
| 1806 | 
            +
                        row = (metric_index // num_columns) + 1
         | 
| 1807 | 
            +
                        col = (metric_index % num_columns) + 1
         | 
| 1808 | 
            +
             | 
| 1809 | 
            +
                        subplot_has_data = False
         | 
| 1810 | 
            +
             | 
| 1811 | 
            +
                        for experiment_id, df in experiment_to_dataframe.items():
         | 
| 1812 | 
            +
                            if df is None or df.empty or metric_name not in df.columns:
         | 
| 1813 | 
            +
                                continue
         | 
| 1814 | 
            +
             | 
| 1815 | 
            +
                            # Build x/y based on metric type
         | 
| 1816 | 
            +
                            try:
         | 
| 1817 | 
            +
                                df_local = df.copy()
         | 
| 1818 | 
            +
                                use_time_axis = _is_system_metric(metric_name)
         | 
| 1819 | 
            +
             | 
| 1820 | 
            +
                                if use_time_axis:
         | 
| 1821 | 
            +
                                    # Time axis: use timestamp → datetime
         | 
| 1822 | 
            +
                                    df_local['time'] = pd.to_datetime(df_local.get('timestamp', ''), errors='coerce')
         | 
| 1823 | 
            +
                                    if df_local['time'].isna().all():
         | 
| 1824 | 
            +
                                        df_local['time'] = range(1, len(df_local) + 1)
         | 
| 1825 | 
            +
                                    df_local.sort_values('time', inplace=True)
         | 
| 1826 | 
            +
                                    valid_mask = df_local[metric_name].notna()
         | 
| 1827 | 
            +
                                    x_values = df_local.loc[valid_mask, 'time'].tolist()
         | 
| 1828 | 
            +
                                    y_values = df_local.loc[valid_mask, metric_name].tolist()
         | 
| 1829 | 
            +
                                else:
         | 
| 1830 | 
            +
                                    # Step axis: ensure a reasonable step column exists
         | 
| 1831 | 
            +
                                    if 'step' not in df_local or df_local['step'].nunique() <= 1:
         | 
| 1832 | 
            +
                                        for alternative in ['train/global_step', 'global_step', 'train/step']:
         | 
| 1833 | 
            +
                                            if alternative in df_local.columns and df_local[alternative].notna().any():
         | 
| 1834 | 
            +
                                                df_local['step'] = pd.to_numeric(df_local[alternative], errors='coerce')
         | 
| 1835 | 
            +
                                                break
         | 
| 1836 | 
            +
                                    if 'step' not in df_local.columns or df_local['step'].isna().all() or df_local['step'].nunique() <= 1:
         | 
| 1837 | 
            +
                                        df_local['step'] = range(1, len(df_local) + 1)
         | 
| 1838 | 
            +
                                    else:
         | 
| 1839 | 
            +
                                        df_local['step'] = pd.to_numeric(df_local.get('step', -1), errors='coerce').fillna(-1)
         | 
| 1840 | 
            +
                                    df_local.sort_values('step', inplace=True)
         | 
| 1841 | 
            +
                                    valid_mask = df_local[metric_name].notna()
         | 
| 1842 | 
            +
                                    x_values = df_local.loc[valid_mask, 'step'].tolist()
         | 
| 1843 | 
            +
                                    y_values = df_local.loc[valid_mask, metric_name].tolist()
         | 
| 1844 | 
            +
                            except Exception:
         | 
| 1845 | 
            +
                                # Fallback to naive arrays
         | 
| 1846 | 
            +
                                valid_mask = df[metric_name].notna()
         | 
| 1847 | 
            +
                                x_values = df.loc[valid_mask, 'step'].tolist() if 'step' in df.columns else list(range(1, len(df) + 1))
         | 
| 1848 | 
            +
                                y_values = df.loc[valid_mask, metric_name].tolist() if metric_name in df.columns else []
         | 
| 1849 | 
            +
             | 
| 1850 | 
            +
                            if not x_values or not y_values:
         | 
| 1851 | 
            +
                                continue
         | 
| 1852 | 
            +
             | 
| 1853 | 
            +
                            subplot_has_data = True
         | 
| 1854 | 
            +
                            any_trace_added = True
         | 
| 1855 | 
            +
                            color = experiment_to_color.get(experiment_id, 'blue')
         | 
| 1856 | 
            +
             | 
| 1857 | 
            +
                            fig.add_trace(
         | 
| 1858 | 
            +
                                go.Scatter(
         | 
| 1859 | 
            +
                                    x=x_values,
         | 
| 1860 | 
            +
                                    y=y_values,
         | 
| 1861 | 
            +
                                    mode='lines+markers',
         | 
| 1862 | 
            +
                                    name=experiment_id,
         | 
| 1863 | 
            +
                                    line=dict(width=2, color=color),
         | 
| 1864 | 
            +
                                    marker=dict(size=4, color=color),
         | 
| 1865 | 
            +
                                    showlegend=True,
         | 
| 1866 | 
            +
                                    connectgaps=True if _is_eval_metric(metric_name) else False
         | 
| 1867 | 
            +
                                ),
         | 
| 1868 | 
            +
                                row=row,
         | 
| 1869 | 
            +
                                col=col
         | 
| 1870 | 
            +
                            )
         | 
| 1871 | 
            +
             | 
| 1872 | 
            +
                            # Axis titles per subplot
         | 
| 1873 | 
            +
                            try:
         | 
| 1874 | 
            +
                                fig.update_xaxes(
         | 
| 1875 | 
            +
                                    title_text=("Time" if _is_system_metric(metric_name) else "Training Step"),
         | 
| 1876 | 
            +
                                    row=row,
         | 
| 1877 | 
            +
                                    col=col
         | 
| 1878 | 
            +
                                )
         | 
| 1879 | 
            +
                                fig.update_yaxes(title_text=metric_name, row=row, col=col)
         | 
| 1880 | 
            +
                            except Exception:
         | 
| 1881 | 
            +
                                pass
         | 
| 1882 | 
            +
             | 
| 1883 | 
            +
                        # If no experiment had data for this metric, annotate the subplot
         | 
| 1884 | 
            +
                        if not subplot_has_data:
         | 
| 1885 | 
            +
                            try:
         | 
| 1886 | 
            +
                                fig.add_annotation(
         | 
| 1887 | 
            +
                                    text=f"No data for metric: {metric_name}",
         | 
| 1888 | 
            +
                                    xref="paper", yref="paper",
         | 
| 1889 | 
            +
                                    x=0.5, y=0.5, showarrow=False,
         | 
| 1890 | 
            +
                                    font=dict(size=12, color="gray"),
         | 
| 1891 | 
            +
                                    row=row, col=col
         | 
| 1892 | 
            +
                                )
         | 
| 1893 | 
            +
                            except Exception:
         | 
| 1894 | 
            +
                                fig.add_annotation(
         | 
| 1895 | 
            +
                                    text=f"No data for metric: {metric_name}",
         | 
| 1896 | 
            +
                                    xref="paper", yref="paper",
         | 
| 1897 | 
            +
                                    x=0.5, y=0.5, showarrow=False,
         | 
| 1898 | 
            +
                                    font=dict(size=12, color="gray")
         | 
| 1899 | 
            +
                                )
         | 
| 1900 | 
            +
             | 
| 1901 | 
            +
                    fig.update_layout(
         | 
| 1902 | 
            +
                        title="Experiment Comparison",
         | 
| 1903 | 
            +
                        height=max(350, 320 * num_rows),
         | 
| 1904 | 
            +
                        plot_bgcolor='white',
         | 
| 1905 | 
            +
                        paper_bgcolor='white',
         | 
| 1906 | 
            +
                        hovermode='x unified',
         | 
| 1907 | 
            +
                        legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1)
         | 
| 1908 | 
            +
                    )
         | 
| 1909 | 
            +
             | 
| 1910 | 
            +
                    # Grid lines for all subplots
         | 
| 1911 | 
            +
                    for r in range(1, num_rows + 1):
         | 
| 1912 | 
            +
                        for c in range(1, num_columns + 1):
         | 
| 1913 | 
            +
                            fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray', row=r, col=c)
         | 
| 1914 | 
            +
                            fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray', row=r, col=c)
         | 
| 1915 | 
            +
             | 
| 1916 | 
            +
                    if not any_trace_added:
         | 
| 1917 | 
            +
                        # Overall annotation if literally nothing to plot
         | 
| 1918 | 
            +
                        fig = go.Figure()
         | 
| 1919 | 
            +
                        fig.add_annotation(
         | 
| 1920 | 
            +
                            text="No comparable data available for the selected experiments/metrics",
         | 
| 1921 | 
            +
                            xref="paper", yref="paper",
         | 
| 1922 | 
            +
                            x=0.5, y=0.5, showarrow=False,
         | 
| 1923 | 
            +
                            font=dict(size=16, color="orange")
         | 
| 1924 | 
            +
                        )
         | 
| 1925 | 
            +
                        fig.update_layout(
         | 
| 1926 | 
            +
                            title="No Data",
         | 
| 1927 | 
            +
                            plot_bgcolor='white', paper_bgcolor='white'
         | 
| 1928 | 
            +
                        )
         | 
| 1929 | 
            +
             | 
| 1930 | 
            +
                    return fig
         | 
| 1931 |  | 
| 1932 | 
             
                except Exception as e:
         | 
| 1933 | 
             
                    logger.error(f"Error creating comparison from selection: {str(e)}")
         | 
